Principles of Microwave Circuits

Principles of Microwave Circuits PDF Author: Carol Gray Montgomery
Publisher: IET
ISBN: 9780863411007
Category : Technology & Engineering
Languages : en
Pages : 512

Get Book

Book Description
Offers a detailed explanation of the development of the impedance concept and its equivalent microwave circuits.

Principles of Microwave Circuits

Principles of Microwave Circuits PDF Author: Carol Gray Montgomery
Publisher: IET
ISBN: 9780863411007
Category : Technology & Engineering
Languages : en
Pages : 512

Get Book

Book Description
Offers a detailed explanation of the development of the impedance concept and its equivalent microwave circuits.

Steady-State Methods for Simulating Analog and Microwave Circuits

Steady-State Methods for Simulating Analog and Microwave Circuits PDF Author: Kenneth S. Kundert
Publisher: Springer Science & Business Media
ISBN: 1475720815
Category : Technology & Engineering
Languages : en
Pages : 259

Get Book

Book Description
The motivation for starting the work described in this book was the interest that Hewlett-Packard's microwave circuit designers had in simulation techniques that could tackle the problem of finding steady state solutions for nonlinear circuits, particularly circuits containing distributed elements such as transmission lines. Examining the problem of computing steady-state solutions in this context has led to a collection of novel numerical algorithms which we have gathered, along with some background material, into this book. Although we wished to appeal to as broad an audience as possible, to treat the subject in depth required maintaining a narrow focus. Our compromise was to assume that the reader is familiar with basic numerical methods, such as might be found in [dahlquist74] or [vlach83], but not assume any specialized knowledge of methods for steady-state problems. Although we focus on algorithms for computing steady-state solutions of analog and microwave circuits, the methods herein are general in nature and may find use in other disciplines. A number of new algorithms are presented, the contributions primarily centering around new approaches to harmonic balance and mixed frequency-time methods. These methods are described, along with appropriate background material, in what we hope is a reasonably satisfying blend of theory, practice, and results. The theory is given so that the algorithms can be fully understood and their correctness established.

Microwave Devices and Circuits

Microwave Devices and Circuits PDF Author: Samuel Y. Liao
Publisher: Pearson Education India
ISBN: 9788177583533
Category : Microwave circuits
Languages : en
Pages : 568

Get Book

Book Description


Microwave Engineering

Microwave Engineering PDF Author: David M. Pozar
Publisher: John Wiley & Sons
ISBN: 0470631554
Category : Technology & Engineering
Languages : en
Pages : 752

Get Book

Book Description
Pozar's new edition of Microwave Engineering includes more material on active circuits, noise, nonlinear effects, and wireless systems. Chapters on noise and nonlinear distortion, and active devices have been added along with the coverage of noise and more material on intermodulation distortion and related nonlinear effects. On active devices, there's more updated material on bipolar junction and field effect transistors. New and updated material on wireless communications systems, including link budget, link margin, digital modulation methods, and bit error rates is also part of the new edition. Other new material includes a section on transients on transmission lines, the theory of power waves, a discussion of higher order modes and frequency effects for microstrip line, and a discussion of how to determine unloaded.

Introduction to Microwave Circuits

Introduction to Microwave Circuits PDF Author: Robert J. Weber
Publisher: John Wiley & Sons
ISBN: 0780347048
Category : Technology & Engineering
Languages : en
Pages : 451

Get Book

Book Description
"Do you want to design a wireless transmitter or receiver for hand-held telephones? Have you wondered why the printed circuit wires on high-frequency circuits don't always run in a straight line? This valuable text will answer all of your questions regarding component parasitics and circuit characterization for rf/microwave amplifier, oscillator, and filter circuit design and analysis. You will understand why capacitors act as inductors and vice versa and why amplifiers work like oscillators, while oscillators for local area networks work more like local area heaters. Application of the information in Introduction to Microwave Circuits will reduce design-cycle time and costs, markedly increasing the probability of first-time success in printed circuit or monolithic microwave integrated circuit (MMIC) design. Several approaches are taken into consideration, such as the effects of currents on the ground plane, bypass and coupling capacitors, and nonlinear effects in linear circuits. Featured topics include: * Incorporation of component parasitics in the design cycle * Closed form solution to oscillator design * Odd mode stability analysis * PIN diode analysis for high-power switching applications An integrated design example of a 1.25 GHz amplifier, oscillator, and filter printed circuit is also included, which could be useful in printed circuit board designs from tens of megahertz to tens of gigahertz. Introduction to Microwave Circuits provides the tools necessary to analyze or synthesize microwave circuits. This text is an essential reference for undergraduate students, microwave engineers, and administrators. Also, it will assist experienced designers in other fields to meet the current rapid expansion of communication system applications and work effectively in microwave circuit design. About the Author Robert J. Weber began his prolific career in the Solid State Research Laboratory at the Collins Radio Company, later a part of Rockwell International. For 25 years, he worked on advanced development and applied research in the one- to ten-gigahertz frequency range and received several distinguished awards for his valuable contributions to the field. Dr. Weber is involved in ongoing experimental research in integrating microwave circuits with other devices such as MEMS, chemical sensors, and electro-optics. Also, he teaches microwave circuit design and fiber-optics communications at the Department of Electrical and Computer Engineering, Iowa State University. Dr. Weber is an IEEE Fellow." Sponsored by: IEEE Microwave Theory and Techniques Society.

Planar Microwave Engineering

Planar Microwave Engineering PDF Author: Thomas H. Lee
Publisher: Cambridge University Press
ISBN: 1316175774
Category : Technology & Engineering
Languages : en
Pages : 868

Get Book

Book Description
Modern wireless communications hardware is underpinned by RF and microwave design techniques. This insightful book contains a wealth of circuit layouts, design tips, and practical measurement techniques for building and testing practical gigahertz systems. The book covers everything you need to know to design, build, and test a high-frequency circuit. Microstrip components are discussed, including tricks for extracting good performance from cheap materials. Connectors and cables are also described, as are discrete passive components, antennas, low-noise amplifiers, oscillators, and frequency synthesizers. Practical measurement techniques are presented in detail, including the use of network analyzers, sampling oscilloscopes, spectrum analyzers, and noise figure meters. Throughout the focus is practical, and many worked examples and design projects are included. There is also a CD-ROM that contains a variety of design and analysis programs. The book is packed with indispensable information for students taking courses on RF or microwave circuits and for practising engineers.

Microwave Circuit Design

Microwave Circuit Design PDF Author: Kyung-Whan Yeom
Publisher: Prentice Hall
ISBN: 0134085825
Category : Technology & Engineering
Languages : en
Pages : 1266

Get Book

Book Description
This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. Today’s Up-to-Date, Step-by-Step Guide to Designing Active Microwave Circuits Microwave Circuit Design is a complete guide to modern circuit design, including simulation tutorials that demonstrate Keysight Technologies’ Advanced Design System (ADS), one of today’s most widely used electronic design automation packages. And the software-based circuit design techniques that Yeom presents can be easily adapted for any modern tool or environment. Throughout, author Kyung-Whan Yeom uses the physical interpretation of basic concepts and concrete examples—not exhaustive calculations—to clearly and concisely explain the essential theory required to design microwave circuits, including passive and active device concepts, transmission line theory, and the basics of high-frequency measurement. To bridge the gap between theory and practice, Yeom presents real-world, hands-on examples focused on key elements of modern communication systems, radars, and other microwave transmitters and receivers. Practical coverage includes Up-to-date microwave simulation design examples based on ADS and easily adaptable to any simulator Detailed, step-by-step derivations of key design parameters related to procedures, devices, and performance Relevant, hands-on problem sets in every chapter Clear discussions of microwave IC categorization and roles; passive device impedances and equivalent circuits; coaxial and microstrip transmission lines; active devices (FET, BJT, DC Bias); and impedance matching A complete, step-by-step introduction to circuit simulation using the ADS toolset and window framework Low noise amplifier (LNA) design: gains, stability, conjugate matching, and noise circles Power amplifier (PA) design: optimum load impedances, classification, linearity, and composite PAs Microwave oscillator design: oscillation conditions, phase noise, basic circuits, and dielectric resonators Phase lock loops (PLL) design: configuration, operation, components, and loop filters Mixer design: specifications, Schottky diodes, qualitative analysis of mixers (SEM, SBM, DBM), and quantitative analysis of single-ended mixer (SEM) Microwave Circuit Design brings together all the practical skills graduate students and professionals need to successfully design today’s active microwave circuits.

Microwave Integrated Circuits

Microwave Integrated Circuits PDF Author: Konishi
Publisher: CRC Press
ISBN: 9780824781996
Category : Technology & Engineering
Languages : en
Pages : 628

Get Book

Book Description
Presents to a wide range of students and engineers up-to-date techniques of MICs, with readily comprehensible explanations, providing a unified description of MICs, clarifying physical content, including sufficient data to be directly useful to active engineers, and providing a path of entry into th

Nonlinear Microwave Circuits

Nonlinear Microwave Circuits PDF Author: Stephen A. Maas
Publisher: Wiley-IEEE Press
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 508

Get Book

Book Description
This classic text is an excellent resource and time-saver for engineers who need to tackle troublesome nonlinear components that remain in use despite recent advances in microwave technology. NONLINEAR MICROWAVE CIRCUITS offers detailed, technically substantial coverage of key methods for the analysis, design, and optimization of nonlinear microwave circuits. Using minimal mathematics, it integrates in-depth, "readable" coverage of the underlying theories that guide these methods. This book is replete with valuable "how to" information on a wide range of topics.

Lumped Elements for RF and Microwave Circuits, Second Edition

Lumped Elements for RF and Microwave Circuits, Second Edition PDF Author: Inder J. Bahl
Publisher: Artech House
ISBN: 1630819336
Category : Technology & Engineering
Languages : en
Pages : 593

Get Book

Book Description
Fully updated and including entirely new chapters, this Second Edition provides in-depth coverage of the different types of RF and microwave circuit elements, including inductors, capacitors, resistors, transformers, via holes, airbridges, and crossovers. Featuring extensive formulas for lumped elements, design trade-offs, and an updated and current list of references, the book helps you understand the value and usefulness of lumped elements in the design of RF, microwave and millimeter wave components and circuits. You’ll find a balanced treatment between standalone lumped elements and their circuits using MICs, MMICs and RFICs technologies. You’ll also find detailed information on a broader range RFICs that was not available when the popular first edition was published. The book captures – in one consolidated volume -- the fundamentals, equations, modeling, examples, references and overall procedures to design, test and produce microwave components that are indispensable in industry and academia today. With its superb organization and expanded coverage of the subject, this is a must-have, go-to resource for practicing engineers and researchers in industry, government and university and microwave engineers working in the antenna area. Students will also find it a useful reference with its clear explanations, many examples and practical modeling guidelines.