Microtechnology for Cell Manipulation and Sorting

Microtechnology for Cell Manipulation and Sorting PDF Author: Wonhee Lee
Publisher: Springer
ISBN: 3319441396
Category : Technology & Engineering
Languages : en
Pages : 287

Get Book Here

Book Description
This book delves into the recent developments in the microscale and microfluidic technologies that allow manipulation at the single and cell aggregate level. Expert authors review the dominant mechanisms that manipulate and sort biological structures, making this a state-of-the-art overview of conventional cell sorting techniques, the principles of microfluidics, and of microfluidic devices. All chapters highlight the benefits and drawbacks of each technique they discuss, which include magnetic, electrical, optical, acoustic, gravity/sedimentation, inertial, deformability, and aqueous two-phase systems as the dominant mechanisms utilized by microfluidic devices to handle biological samples. Each chapter explains the physics of the mechanism at work, and reviews common geometries and devices to help readers decide the type of style of device required for various applications. This book is appropriate for graduate-level biomedical engineering and analytical chemistry students, as well as engineers and scientists working in the biotechnology industry.

Microtechnology for Cell Manipulation and Sorting

Microtechnology for Cell Manipulation and Sorting PDF Author: Wonhee Lee
Publisher: Springer
ISBN: 3319441396
Category : Technology & Engineering
Languages : en
Pages : 287

Get Book Here

Book Description
This book delves into the recent developments in the microscale and microfluidic technologies that allow manipulation at the single and cell aggregate level. Expert authors review the dominant mechanisms that manipulate and sort biological structures, making this a state-of-the-art overview of conventional cell sorting techniques, the principles of microfluidics, and of microfluidic devices. All chapters highlight the benefits and drawbacks of each technique they discuss, which include magnetic, electrical, optical, acoustic, gravity/sedimentation, inertial, deformability, and aqueous two-phase systems as the dominant mechanisms utilized by microfluidic devices to handle biological samples. Each chapter explains the physics of the mechanism at work, and reviews common geometries and devices to help readers decide the type of style of device required for various applications. This book is appropriate for graduate-level biomedical engineering and analytical chemistry students, as well as engineers and scientists working in the biotechnology industry.

Medical and Industrial Applications of Microfluidic-based Cell/Tissue Culture and Organs-on-a-Chip: Advances in Organs-on-a-Chip and Organoids Technologies

Medical and Industrial Applications of Microfluidic-based Cell/Tissue Culture and Organs-on-a-Chip: Advances in Organs-on-a-Chip and Organoids Technologies PDF Author: Qasem Ramadan
Publisher: Frontiers Media SA
ISBN: 2889631141
Category :
Languages : en
Pages : 138

Get Book Here

Book Description
Recent developments in microfluidics have demonstrated enormous potential of microscale cell culture for biology studies and recognized as instrumental in performing rapid and efficient experiments on small-sample volumes. Microfluidic-based cell culture is an area of research that keeps growing and gaining importance as a prominent technology, able to link scientific disciplines with industrial and clinical applications. In particular, organotypic cell culture and its integration in microfluidic devices would enable the realization of “in vivo-like” cell microenvironment within systems that are more amenable to automation and integration. Such remarkable advancement forms the foundation and motivation to transfer research from the laboratory to the field. Although the microfluidics and cell culture technologies have influenced many areas of science, significant research efforts are currently focus on finding methods to transform drug screening and toxicity testing from a system reliant on high-dose animal studies to one based primarily on human-relevant in vitro models. In line with regulatory developments precluding the use of animal testing, as well as fundamental differences in animal versus human, human in vitro methodologies are required to replace the animal-based testes while permitting physiologically relevant model equivalents for superior prediction. Organs-on-a-chip is an ambitious and rapidly growing technology that promise to bridge the gap between in vivo and in vitro studies and open wide possibilities in medical and industrial applications. However, many challenges are still ahead. This eBook present recent state-of-the-art works and critical reviews in organs-on-a-chip technology which highlight the new advances in this growing field with an emphasis on the interface between technological advancements and high impact applications.

Cell Processing Technology

Cell Processing Technology PDF Author: Yuji Morimoto
Publisher: Springer Nature
ISBN: 9819742560
Category :
Languages : en
Pages : 210

Get Book Here

Book Description


Microfluidic Cell Culture Systems

Microfluidic Cell Culture Systems PDF Author: Jeffrey T Borenstein
Publisher: Elsevier
ISBN: 0128136723
Category : Science
Languages : en
Pages : 398

Get Book Here

Book Description
Techniques for microfabricating intricate microfluidic structures that mimic the microenvironment of tissues and organs, combined with the development of biomaterials with carefully engineered surface properties, have enabled new paradigms in and cell culture-based models for human diseases. The dimensions of surface features and fluidic channels made accessible by these techniques are well-suited to the size scale of biological cells. Microfluidic Cell Culture Systems applies design and experimental techniques used in in microfluidics, and cell culture technologies to organ-on-chip systems. This book is intended to serve as a professional reference, providing a practical guide to design and fabrication of microfluidic systems and biomaterials for use in cell culture systems and human organ models. The book covers topics ranging from academic first principles of microfluidic design, to clinical translation strategies for cell culture protocols. The goal is to help professionals coming from an engineering background to adapt their expertise for use in cell culture and organ models applications, and likewise to help biologists to design and employ microfluidic technologies in their cell culture systems. This 2nd edition contains new material that strengthens the focus on in vitro models useful for drug discovery and development. One new chapter reviews liver organ models from an industry perspective, while others cover new technologies for scaling these models and for multi-organ systems. Other new chapters highlight the development of organ models and systems for specific applications in disease modeling and drug safety. Previous chapters have been revised to reflect the latest advances. - Provides design and operation methodology for microfluidic and microfabricated materials and devices for organ-on-chip disease and safety models. This is a rapidly expanding field that will continue to grow along with advances in cell biology and microfluidics technologies. - Comprehensively covers strategies and techniques ranging from academic first principles to industrial scale-up approaches. Readers will gain insight into cell-material interactions, microfluidic flow, and design principles. - Offers three fundamental types of information: 1) design principles, 2) operation techniques, and 3) background information/perspectives. The book is carefully designed to strike a balance between these three areas, so it will be of use to a broad range of readers with different technical interests and educational levels.

Microfluidics-Aided Technologies

Microfluidics-Aided Technologies PDF Author: Dhananjay Bodas
Publisher: Elsevier
ISBN: 0323955347
Category : Science
Languages : en
Pages : 418

Get Book Here

Book Description
Microfluidics-Aided Technologies: Platforms for Next Generation Biological Applications aims to provide comprehensive information of microfluidic technologies, their development and biomedical applications. The book provides the fundamentals of microfluidics and addresses the advances and challenges of microfluidic platforms for diagnostics, biological assays, cellular analysis, and drug delivery. Sections introduce micro-scale flow enabled systems, followed by discussions on applications in diagnostics, prognostics, and cellular analysis in the second and third section. The fourth section focuses on breakthroughs in microfluidics like 3D bioprinting, tissue-on-chip, organ-on-chip, and organism-on-chip. The last section provides insights on microfluidics and the study of plants and microbes. This book offers researchers an interdisciplinary perspective towards biological problems. It is a resource for advanced undergraduate, graduate students, researchers and industry scientists interested in the emergence of advance techniques and next generation microfluidics-aided technologies for applications in the biomedical and medical research. - Discusses the development of advanced techniques and methods for the diagnosis and treatment of various diseases - Discusses experimental approaches that facilitate the study of various aspects of life sciences - Presents biomaterial design strategies and recent breakthroughs for organ-on chip and organism on chip platforms - Summarize various polymers, techniques and types of microfluidic devices

Microfluidics for Cells and Other Organisms

Microfluidics for Cells and Other Organisms PDF Author: Danny van Noort
Publisher: MDPI
ISBN: 3039215620
Category : Technology & Engineering
Languages : en
Pages : 200

Get Book Here

Book Description
Microfluidics-based devices play an important role in creating realistic microenvironments in which cell cultures can thrive. They can, for example, be used to monitor drug toxicity and perform medical diagnostics, and be in a static-, perfusion- or droplet-based device. They can also be used to study cell-cell, cell-matrix or cell-surface interactions. Cells can be either single cells, 3D cell cultures or co-cultures. Other organisms could include bacteria, zebra fish embryo, C. elegans, to name a few.

Particles Separation in Microfluidic Devices

Particles Separation in Microfluidic Devices PDF Author: Takasi Nisisako
Publisher: MDPI
ISBN: 3039366947
Category : Technology & Engineering
Languages : en
Pages : 230

Get Book Here

Book Description
Microfluidic platforms are increasingly being used for separating a wide variety of particles based on their physical and chemical properties. In the past two decades, many practical applications have been found in chemical and biological sciences, including single cell analysis, clinical diagnostics, regenerative medicine, nanomaterials synthesis, environmental monitoring, etc. In this Special Issue, we invited contributions to report state-of-the art developments in the fields of micro- and nanofluidic separation, fractionation, sorting, and purification of all classes of particles, including, but not limited to, active devices using electric, magnetic, optical, and acoustic forces; passive devices using geometries and hydrodynamic effects at the micro/nanoscale; confined and open platforms; label-based and label-free technology; and separation of bioparticles (including blood cells), circulating tumor cells, live/dead cells, exosomes, DNA, and non-bioparticles, including polymeric or inorganic micro- and nanoparticles, droplets, bubbles, etc. Practical devices that demonstrate capabilities to solve real-world problems were of particular interest.

Nonmagnetic and Magnetic Quantum Dots

Nonmagnetic and Magnetic Quantum Dots PDF Author: Vasilios N. Stavrou
Publisher: BoD – Books on Demand
ISBN: 9535139592
Category : Science
Languages : en
Pages : 248

Get Book Here

Book Description
The book entitled Nonmagnetic and Magnetic Quantum Dots is divided into two sections. In Section 1, the chapters are related to nonmagnetic quantum dots and their applications. More specifically, exact models and numerical methods have been presented to describe the analytical solution of the carrier wave functions, the quantum mechanical aspects of quantum dots, and the comparison of the latter to experimental data. Furthermore, methods to produce quantum dots, synthesis techniques of colloidal quantum dots, and applications on sensors and biology, among others, are included in this section. In Section 2, a few topics of magnetic quantum dots and their applications are presented. The section starts with a theoretical model to describe the magnetization dynamics in magnetic quantum dot array and the description of dilute magnetic semiconducting quantum dots and their applications. Additionally, a few applications of magnetic quantum dots in sensors, biology, and medicine are included in Section 2.

Dynamics of Blood Cell Suspensions in Microflows

Dynamics of Blood Cell Suspensions in Microflows PDF Author: Annie Viallat
Publisher: CRC Press
ISBN: 1315395126
Category : Medical
Languages : en
Pages : 512

Get Book Here

Book Description
Blood microcirculation is essential to our bodies for the successful supply of nutrients, waste removal, oxygen delivery, homeostasis, controlling temperature, wound healing, and active immune surveillance. This book provides a physical introduction to the subject and explores how researchers can successfully describe, understand, and predict behaviours of blood flow and blood cells that are directly linked to these important physiological functions. Using practical examples, this book explains how the key concepts of physics are related to blood microcirculation and underlie the dynamic behavior of red blood cells, leukocytes, and platelets. This interdisciplinary book will be a valuable reference for researchers and graduate students in biomechanics, fluid mechanics, biomedical engineering, biological physics, and medicine. Features: The first book to provide a physical perspective of blood microcirculation Draws attention to the potential of this physical approach for novel applications in medicine Edited by specialists in this field, with chapter contributions from subject area specialists

Pulsed Electric Fields Technology for the Food Industry

Pulsed Electric Fields Technology for the Food Industry PDF Author: Javier Raso
Publisher: Springer Nature
ISBN: 3030705862
Category : Technology & Engineering
Languages : en
Pages : 558

Get Book Here

Book Description
Many novel technologies have been proposed in the attempt to improve existing food processing methods. Among emerging nonthermal technologies, high intensity pulsed electric fields (PEF) is appealing due to its short treatment times and reduced heating effects. This book presents information accumulated on PEF during the last 15 years by experienced microbiologists, biochemists, food technologists, and electrical and food engineers.