Microfluidic Microwave Resonant Sensors

Microfluidic Microwave Resonant Sensors PDF Author: David James Rowe
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Matter can be identified by its interaction with electromagnetic fields. This can be described by its dielectric and magnetic properties, which typically vary with respect to frequency in the microwave region. Microwave-frequency spectroscopy is capable of making non-contact, non-destructive, non-invasive and label-free measurements with respect to time. It can be used to characterise all states of matter and combinations thereof, such as colloids and microparticulate suspensions. Sensors based upon this technology therefore have great potential for (bio)chemical and industrial point-of-sampling applications where existing measurement techniques are insufficiently portable, low-cost or sensitive. Microfluidics is the manipulation of fluids within microscale geometries. This gives rise to phenomena not observed at the macroscale that can be exploited to achieve enhanced control of fluid flow. This means that microfluidic techniques can be used to perform complex chemistry in a completely sealed environment with minimal reagent consumption. Hence, microfluidics offers an ideal sample interfacing method for a microwave-frequency sensor. This work is concerned with developing novel, low-cost and highly sensitive probes that be easily integrated into a microfluidic device for performing on-chip sample preparation and diagnostics for generic (bio)chemical and industrial point-of-sampling applications. To this end, several novel microwave resonant structures were designed, optimised and integrated into microfluidic devices in order to characterise a variety of liquid-phase samples.

Microfluidic Microwave Resonant Sensors

Microfluidic Microwave Resonant Sensors PDF Author: David James Rowe
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Matter can be identified by its interaction with electromagnetic fields. This can be described by its dielectric and magnetic properties, which typically vary with respect to frequency in the microwave region. Microwave-frequency spectroscopy is capable of making non-contact, non-destructive, non-invasive and label-free measurements with respect to time. It can be used to characterise all states of matter and combinations thereof, such as colloids and microparticulate suspensions. Sensors based upon this technology therefore have great potential for (bio)chemical and industrial point-of-sampling applications where existing measurement techniques are insufficiently portable, low-cost or sensitive. Microfluidics is the manipulation of fluids within microscale geometries. This gives rise to phenomena not observed at the macroscale that can be exploited to achieve enhanced control of fluid flow. This means that microfluidic techniques can be used to perform complex chemistry in a completely sealed environment with minimal reagent consumption. Hence, microfluidics offers an ideal sample interfacing method for a microwave-frequency sensor. This work is concerned with developing novel, low-cost and highly sensitive probes that be easily integrated into a microfluidic device for performing on-chip sample preparation and diagnostics for generic (bio)chemical and industrial point-of-sampling applications. To this end, several novel microwave resonant structures were designed, optimised and integrated into microfluidic devices in order to characterise a variety of liquid-phase samples.

Microwave Microfluidic Resonant Sensors and Applicators

Microwave Microfluidic Resonant Sensors and Applicators PDF Author: Hayder Miri Hamzah
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Planar Microwave Sensors

Planar Microwave Sensors PDF Author: Ferran Martín
Publisher: John Wiley & Sons
ISBN: 1119811031
Category : Technology & Engineering
Languages : en
Pages : 484

Get Book Here

Book Description
Comprehensive resource detailing the latest advances in microwave and wireless sensors implemented in planar technology Planar Microwave Sensors is an authoritative resource on the subject, discussing the main relevant sensing strategies, working principles, and applications on the basis of the authors’ own experience and background, while also highlighting the most relevant contributions to the topic reported by international research groups. The authors provide an overview of planar microwave sensors grouped by chapters according to their working principle. In each chapter, the working principle is explained in detail and the specific sensor design strategies are discussed, including validation examples at both simulation and experimental level. The most suited applications in each case are also reported. The necessary theory and analysis for sensor design are further provided, with special emphasis on performance improvement (i.e., sensitivity and resolution optimization, dynamic range, etc.). Lastly, the work covers a number of applications, from material characterization to biosensing, including motion control sensors, microfluidic sensors, industrial sensors, and more. Sample topics covered in the work include: Non-resonant and resonant sensors, reflective-mode and transmission-mode sensors, single-ended and differential sensors, and contact and contactless sensors Design guidelines for sensor performance optimization and analytical methods to retrieve the variables of interest from the measured sensor responses Radiofrequency identification (RFID) sensor types, prospective applications, and materials/technologies towards “green sensors” implementation Comparisons between different technologies for sensing and the advantages and limitations of microwave sensors, particularly planar sensors Engineers and qualified professionals involved in sensor technologies, along with undergraduate and graduate students in related programs of study, can harness the valuable information inside Planar Microwave Sensors to gain complete foundational knowledge on the subject and stay up to date on the latest research and developments in the field.

Coupled Structures for Microwave Sensing

Coupled Structures for Microwave Sensing PDF Author: Ferran Martín
Publisher: Springer Nature
ISBN: 3031538617
Category :
Languages : en
Pages : 474

Get Book Here

Book Description


Microfluidic Biosensors

Microfluidic Biosensors PDF Author: Wing Cheung Mak
Publisher: Elsevier
ISBN: 012823847X
Category : Technology & Engineering
Languages : en
Pages : 370

Get Book Here

Book Description
Microfluidic Biosensors provides a comprehensive overview covering the most recent emerging technologies on the design, fabrication, and integration of microfluidics with transducers. These form various integrated microfluidic biosensors with device configurations ranging from 2D to 4D levels. Coverage also includes advanced printed microfluidic biosensors, flexible microfluidics for wearable biosensors, autonomous lab-on-a-chip biosensors, CMOS-base microanalysis systems, and microfluidic devices for mobile phone biosensing. The editors and contributors of this book represent both academia and industry, come from a varied range of backgrounds, and offer a global perspective. This book discusses the design and principle of microfluidic systems and uses them for biosensing applications. The microfluidic fabrication technologies covered in this book provide an up-to-date view, allowing the community to think of new ways to overcome challenges faced in this field. The focus is on existing and emerging technologies not currently being analyzed extensively elsewhere, providing a unique perspective and much-needed content. The editors have crafted this book to be accessible to all levels of academics from graduate students, researchers, and professors working in the fields of biosensors, microfluidics design, material science, analytical chemistry, biomedical devices, and biomedical engineering. It can also be useful for industry professionals working for microfluidic device manufacturers, or in the industry of biosensors and biomedical devices. Presents an in-depth overview of microfluidic biosensors and associated emerging technologies such as printed microfluidics and novel transducers Addresses a range of microfluidic biosensors with device configurations ranging from 2D to 4D levels Includes the commercialization aspects of microfluidic biosensors that provide insights for scientists and engineers in research and development

Development of a Novel Microwave Sensing System for Lab on a Chip Applications

Development of a Novel Microwave Sensing System for Lab on a Chip Applications PDF Author: Shinong Mao
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Microwave technology presents tremendous potential as a remote-sensing technology for a wide range of applications spanning from life science research to food industries, pharmaceutical research, and new material discoveries. Integration of microwave sensing with microfluidics for sample processing makes it an ideal choice for point of care applications highly demanded in resourcelimited areas. The vast majority of the existing microwave sensors are manufactured using sophisticated soft lithography technology which has largely limited its development and applications. There is a large demand for developing new fabrication approaches for the feasibility of mass production at a reasonable cost. In this thesis, a new, yet simple method is developed to fabricate split ring resonator (SRR) based microwave sensors. A simple RLC model is used to characterize the resonant frequency of the SRR, and the equations for calculating the RLC's resonant frequency is modified to predict the SRR's resonant frequency base on its geometry. The design is also validated by comparing the simulation results obtained using the commercial software HFSS, and measurements from a real SRR developed sensor. The double ring structure was fabricated onto a printed circuit board by using the industrial photolithograph method. Coating with PDMS and epoxy layer as the passivation layer was tested and compared. Two testing approaches using the SRR sensor developed in this thesis are implemented in this thesis. Their performance for real-time sensing is characterized by applying it to differentiate chemical diary samples and other chemical solutions. In the dipping mode, the sensor is dipped in the material under test (MUT), and in the microfluidic channel mode, the sensor is integrated with a microchannel. The MUT is characterized by analyzing the spectrum data of the reflection coefficient as the function of frequencies. Experimental results indicate that this sensor is capable of differentiating various liquid samples such as DI water, ethanol, isopropanol, oil and salt solutions. Linear relationships between the resonant frequency and the concentrations of chemical composites are also observed in ethanol solutions (0-90%), and salt solutions (NaCl). This sensor is also used to differentiate various milk samples and milk dilutions and it is capable of distinguishing milks with different fat percentages and protein contents. A fully customized vector network analyzer (VNA) is also developed. The circuit structure is designed by referring the existing customized VNAs that were implemented in previous work by iv other lab colleagues. Modifications are made including replacement of the microwave source, using Arduino platform to perform controlling and data acquisition, addition of a harmonic filtering device, and development of a calibration algorithm. The device is validated by comparing its measuring result with a commercial VNA. The customized VNA is able to output a similar spectrum pattern as the commercial VNA, but with slightly shift of the peak frequency.

Planar Metamaterial Based Microwave Sensor Arrays for Biomedical Analysis and Treatment

Planar Metamaterial Based Microwave Sensor Arrays for Biomedical Analysis and Treatment PDF Author: Margarita Puentes Vargas
Publisher: Springer Science & Business Media
ISBN: 3319060414
Category : Technology & Engineering
Languages : en
Pages : 165

Get Book Here

Book Description
This book presents an innovative concept for the realization of sensors based on a planar metamaterial microwave array and shows their application in biomedical analysis and treatment. The sensors are able to transduce the dielectric properties of materials in their direct vicinity into an electric signal. The specific array organization permits a simultaneous analysis of several materials using a single readout signal or a relative characterization of one material where information about its spatial distribution can be extracted. Two applications of the designed sensors are described here: the first is a cytological screening using micro fluidic technology, which shows that the sensors may be integrated into lab-on-chip technologies; the second application regards the use of the sensor in both the analysis and treatment of organic tissues. The developed sensor is able not only to screen the tissues for abnormalities, but also, by changing the applied signals, to perform thermal ablation and treat the abnormalities in a highly focused way. Thus, the research described in this book represents a considerable advancement in the field of biomedical microwave sensing.

Microwave Electronics

Microwave Electronics PDF Author: L. F. Chen
Publisher: John Wiley & Sons
ISBN: 0470020458
Category : Technology & Engineering
Languages : en
Pages : 552

Get Book Here

Book Description
The development of high speed, high frequency circuits and systems requires an understanding of the properties of materials functioning at the microwave level. This comprehensive reference sets out to address this requirement by providing guidance on the development of suitable measurement methodologies tailored for a variety of materials and application systems. Bringing together coverage of a broad range of techniques in one publication for the first time, this book: Provides a comprehensive introduction to microwave theory and microwave measurement techniques. Examines every aspect of microwave material properties, circuit design and applications. Presents materials property characterisation methods along with a discussion of the underlying theory. Outlines the importance of microwave absorbers in the reduction in noise levels in microwave circuits and their importance within defence industry applications. Relates each measurement technique to its application across the fields of microwave engineering, high-speed electronics, remote sensing and the physical sciences. This book will appeal to practising engineers and technicians working in the areas of RF, microwaves, communications, solid-state devices and radar. Senior students, researchers in microwave engineering and microelectronics and material scientists will also find this book a very useful reference.

Dielectric Relaxation in Biological Systems

Dielectric Relaxation in Biological Systems PDF Author: Valerica Raicu
Publisher: OUP Oxford
ISBN: 0191510041
Category : Science
Languages : en
Pages : 451

Get Book Here

Book Description
The study of dielectric properties of biological systems and their components is important not only for fundamental scientific knowledge but also for its applications in medicine, biology, and biotechnology. The associated technique - known as dielectric spectroscopy - has enabled researchers to quickly and accurately acquire time- or frequency-spectra of permittivity and conductivity and permitted the derivation and testing of realistic electrical models for cells and organelles. This text covers the theoretical basis and practical aspects of the study of dielectric properties of biological systems, such as water, electrolyte and polyelectrolytes, solutions of biological macromolecules, cells suspensions and cellular systems. The authors' combined efforts provide a comprehensive and cohesive book that takes advantage of the expertise of multiple scientists involved in cutting-edge research in the specific sub-fields of bio-dielectric spectroscopy while maintaining its self-consistency through numerous discussions. The first six chapters cover theoretical, methodological and experimental aspects of relaxation and dispersion in biological dielectrics at molecular, cellular and cellular aggregate level. Applications are presented in the following chapters which are organized in the order of increased complexity, beginning with pure water, amino acids and proteins, continuing with vesicles and simple cells such as erythrocytes, and then with more complex, organelle-containing cells and cellular aggregates. Due to its broad coverage, the text could be used as a reference book by researchers, and as a textbook for upper-level undergraduate classes and graduate classes in (bio) physics, medical physics, quantitative biology, and engineering.

Medical and Biological Microwave Sensors and Systems

Medical and Biological Microwave Sensors and Systems PDF Author: Isar Mostafanezhad
Publisher: Cambridge University Press
ISBN: 1316982602
Category : Technology & Engineering
Languages : en
Pages : 288

Get Book Here

Book Description
In this comprehensive work, experts in the field detail recent advances in medical and biological microwave sensors and systems, with chapters on topics such as implantable sensors, wearable microwave tags, and UWB technology. Each chapter explores the theory behind the technology, as well as its design and implementation. This is supported by practical examples and details of experimental results, along with discussion of system design, design trade-offs, and possible constraints and manufacturing issues. Applications described include intracranial pressure monitoring, vital signs monitoring, and non-invasive molecular and cellular investigations. Presenting new research and advances in the field, and focusing on the state of the art in medical and biological microwave sensors, this work is an invaluable resource for enthusiastic researchers and practicing engineers in the fields of electrical engineering, biomedical engineering, and medical physics.