Author: Maulin P. Shah
Publisher: Springer Nature
ISBN: 9811518122
Category : Science
Languages : en
Pages : 547
Book Description
Microbial or biological degradation has long been the subject of active concern, and the rapid expansion and growing sophistication of various industries in the last century has significantly increased the volume and complexity of toxic residues of wastes. These can be remediated by plants and microbes, either natural origin or adapted for a specific purpose, in a process known as bioremediation. The interest in microbial biodegradation of pollutants has intensified in recent years in an attempt to find sustainable ways to clean contaminated environments. These bioremediation and biotransformation methods take advantage of the tremendous microbial catabolic diversity to degrade, transform or accumulate a variety of compounds, such as hydrocarbons, polychlorinated biphenyls, polaromatic hydrocarbons pharmaceutical substances, radionuclides and metals. Unlike conventional methods, bioremediation does not physically disturb the site. This book describes the basic principles of biodegradation and shows how these principles are related to bioremediation. Authored by leading, international environmental microbiologists, it discusses topics such as aerobic biodegradation, microbial degradation of pollutants, and microbial community dynamics. It provides valuable insights into how biodegration processes work and can be utilised for pollution abatement, and as such appeals to researchers and postgraduate students as well as experts in the field of bioremediation.
Microbial Bioremediation & Biodegradation
Author: Maulin P. Shah
Publisher: Springer Nature
ISBN: 9811518122
Category : Science
Languages : en
Pages : 547
Book Description
Microbial or biological degradation has long been the subject of active concern, and the rapid expansion and growing sophistication of various industries in the last century has significantly increased the volume and complexity of toxic residues of wastes. These can be remediated by plants and microbes, either natural origin or adapted for a specific purpose, in a process known as bioremediation. The interest in microbial biodegradation of pollutants has intensified in recent years in an attempt to find sustainable ways to clean contaminated environments. These bioremediation and biotransformation methods take advantage of the tremendous microbial catabolic diversity to degrade, transform or accumulate a variety of compounds, such as hydrocarbons, polychlorinated biphenyls, polaromatic hydrocarbons pharmaceutical substances, radionuclides and metals. Unlike conventional methods, bioremediation does not physically disturb the site. This book describes the basic principles of biodegradation and shows how these principles are related to bioremediation. Authored by leading, international environmental microbiologists, it discusses topics such as aerobic biodegradation, microbial degradation of pollutants, and microbial community dynamics. It provides valuable insights into how biodegration processes work and can be utilised for pollution abatement, and as such appeals to researchers and postgraduate students as well as experts in the field of bioremediation.
Publisher: Springer Nature
ISBN: 9811518122
Category : Science
Languages : en
Pages : 547
Book Description
Microbial or biological degradation has long been the subject of active concern, and the rapid expansion and growing sophistication of various industries in the last century has significantly increased the volume and complexity of toxic residues of wastes. These can be remediated by plants and microbes, either natural origin or adapted for a specific purpose, in a process known as bioremediation. The interest in microbial biodegradation of pollutants has intensified in recent years in an attempt to find sustainable ways to clean contaminated environments. These bioremediation and biotransformation methods take advantage of the tremendous microbial catabolic diversity to degrade, transform or accumulate a variety of compounds, such as hydrocarbons, polychlorinated biphenyls, polaromatic hydrocarbons pharmaceutical substances, radionuclides and metals. Unlike conventional methods, bioremediation does not physically disturb the site. This book describes the basic principles of biodegradation and shows how these principles are related to bioremediation. Authored by leading, international environmental microbiologists, it discusses topics such as aerobic biodegradation, microbial degradation of pollutants, and microbial community dynamics. It provides valuable insights into how biodegration processes work and can be utilised for pollution abatement, and as such appeals to researchers and postgraduate students as well as experts in the field of bioremediation.
Microbial Biodegradation and Bioremediation
Author: Surajit Das
Publisher: Elsevier
ISBN: 0128004827
Category : Science
Languages : en
Pages : 641
Book Description
Microbial Biodegradation and Bioremediation brings together experts in relevant fields to describe the successful application of microbes and their derivatives for bioremediation of potentially toxic and relatively novel compounds. This single-source reference encompasses all categories of pollutants and their applications in a convenient, comprehensive package. Our natural biodiversity and environment is in danger due to the release of continuously emerging potential pollutants by anthropogenic activities. Though many attempts have been made to eradicate and remediate these noxious elements, every day thousands of xenobiotics of relatively new entities emerge, thus worsening the situation. Primitive microorganisms are highly adaptable to toxic environments, and can reduce the load of toxic elements by their successful transformation and remediation. - Describes many novel approaches of microbial bioremediation including genetic engineering, metagenomics, microbial fuel cell technology, biosurfactants and biofilm-based bioremediation - Introduces relatively new hazardous elements and their bioremediation practices including oil spills, military waste water, greenhouse gases, polythene wastes, and more - Provides the most advanced techniques in the field of bioremediation, including insilico approach, microbes as pollution indicators, use of bioreactors, techniques of pollution monitoring, and more
Publisher: Elsevier
ISBN: 0128004827
Category : Science
Languages : en
Pages : 641
Book Description
Microbial Biodegradation and Bioremediation brings together experts in relevant fields to describe the successful application of microbes and their derivatives for bioremediation of potentially toxic and relatively novel compounds. This single-source reference encompasses all categories of pollutants and their applications in a convenient, comprehensive package. Our natural biodiversity and environment is in danger due to the release of continuously emerging potential pollutants by anthropogenic activities. Though many attempts have been made to eradicate and remediate these noxious elements, every day thousands of xenobiotics of relatively new entities emerge, thus worsening the situation. Primitive microorganisms are highly adaptable to toxic environments, and can reduce the load of toxic elements by their successful transformation and remediation. - Describes many novel approaches of microbial bioremediation including genetic engineering, metagenomics, microbial fuel cell technology, biosurfactants and biofilm-based bioremediation - Introduces relatively new hazardous elements and their bioremediation practices including oil spills, military waste water, greenhouse gases, polythene wastes, and more - Provides the most advanced techniques in the field of bioremediation, including insilico approach, microbes as pollution indicators, use of bioreactors, techniques of pollution monitoring, and more
Microbial Bioremediation
Author: P RAJENDRAN
Publisher: MJP Publisher
ISBN:
Category : Biography & Autobiography
Languages : en
Pages : 307
Book Description
Bioremediation which is the use of living organisms such as plants (Phytoremediation) and microbes such as bacteria, algae and fungi (Microbial bioremediation) or their systems to treat the contaminants, is an efficient, eco-friendly and economical novel alternative to conventional treatment technologies. This book would serve to inculcate in the readers, the present status, feasibility, and the significance of microbial bioremediation. The various aspects of bioremediation like biodegradation of contaminants and pollutants, and bioconversion, including the genetics of microbial degradation have been comprehensively discussed, with precise diagrammatic representations which will make the reader appreciate the concepts without impediments.
Publisher: MJP Publisher
ISBN:
Category : Biography & Autobiography
Languages : en
Pages : 307
Book Description
Bioremediation which is the use of living organisms such as plants (Phytoremediation) and microbes such as bacteria, algae and fungi (Microbial bioremediation) or their systems to treat the contaminants, is an efficient, eco-friendly and economical novel alternative to conventional treatment technologies. This book would serve to inculcate in the readers, the present status, feasibility, and the significance of microbial bioremediation. The various aspects of bioremediation like biodegradation of contaminants and pollutants, and bioconversion, including the genetics of microbial degradation have been comprehensively discussed, with precise diagrammatic representations which will make the reader appreciate the concepts without impediments.
Microbes for Sustainable Development and Bioremediation
Author: Ram Chandra
Publisher: CRC Press
ISBN: 1000733351
Category : Science
Languages : en
Pages : 556
Book Description
Microbes are the predominant form of life on the planet due to their broad range of adaptation and versatile nutritional behavior. The ability of some microbes to inhabit hostile environment incompatible with most forms of life means that their habitat defines the extent of the biosphere and delineates the barrier between the biosphere and geosphere. The direct and indirect role of microbes that include bacteria, fungi, actinomycetes, viruses, mycoplasma, and protozoans are very much important in development of modern human society for food, drugs, textiles, agriculture, and environment. Furthermore, microorganisms and their enzyme system are responsible for the degradation of various organic matters. Microbes for Sustainable Development and Bioremediation emphasizes the role of microbes for sustainable development of ecosystem. Environmental microbiology role in biogeochemical cycle and bioremediation of environmental waste is major theme, which comprises the following aspects: Bacterial phytoextraction mechanism of heavy metals by native hyperaccumulator plants from complex waste-contaminated site for eco-restoration Role of microbial enzyme for eco-friendly recycling of industrial waste Field-scale remediation of crude oil–contaminated desert soil and treatment technology Microbial technology for metal recovery from e-waste printed circuit board Impact of genomic data on sustainability of ecosystem Methane monooxygenases: their regulations and applications Role of microbes in environmental sustainability and food preservation This book will be directly beneficial to researchers and classroom students, in areas of biotechnology, environmental microbiology, molecular biology, and environmental engineering with specialized collection of cutting-edge knowledge.
Publisher: CRC Press
ISBN: 1000733351
Category : Science
Languages : en
Pages : 556
Book Description
Microbes are the predominant form of life on the planet due to their broad range of adaptation and versatile nutritional behavior. The ability of some microbes to inhabit hostile environment incompatible with most forms of life means that their habitat defines the extent of the biosphere and delineates the barrier between the biosphere and geosphere. The direct and indirect role of microbes that include bacteria, fungi, actinomycetes, viruses, mycoplasma, and protozoans are very much important in development of modern human society for food, drugs, textiles, agriculture, and environment. Furthermore, microorganisms and their enzyme system are responsible for the degradation of various organic matters. Microbes for Sustainable Development and Bioremediation emphasizes the role of microbes for sustainable development of ecosystem. Environmental microbiology role in biogeochemical cycle and bioremediation of environmental waste is major theme, which comprises the following aspects: Bacterial phytoextraction mechanism of heavy metals by native hyperaccumulator plants from complex waste-contaminated site for eco-restoration Role of microbial enzyme for eco-friendly recycling of industrial waste Field-scale remediation of crude oil–contaminated desert soil and treatment technology Microbial technology for metal recovery from e-waste printed circuit board Impact of genomic data on sustainability of ecosystem Methane monooxygenases: their regulations and applications Role of microbes in environmental sustainability and food preservation This book will be directly beneficial to researchers and classroom students, in areas of biotechnology, environmental microbiology, molecular biology, and environmental engineering with specialized collection of cutting-edge knowledge.
Microbial Bioremediation of Non-Metals
Author: Anna-Irini Koukkou
Publisher:
ISBN: 9781912530595
Category :
Languages : en
Pages : 292
Book Description
Topics covered include: enzymatic biodegradation reactions; the impact of bioturbation on hydrocarbon dynamics in marine sediments; the structure, function and biodiversity of ring-hydroxylating dioxygenases involved in PAH biodegradation; strategies to engineer PCB-degrading bacteria; PCB-degrading plant-microbe systems strategies; the structure, regulation and diversity of microbial genes encoding biodegradative enzymes. In addition there are excellent reviews detailing the application of the state-of-the-art molecular technologies to study biodegradative processes. Technologies covered are.
Publisher:
ISBN: 9781912530595
Category :
Languages : en
Pages : 292
Book Description
Topics covered include: enzymatic biodegradation reactions; the impact of bioturbation on hydrocarbon dynamics in marine sediments; the structure, function and biodiversity of ring-hydroxylating dioxygenases involved in PAH biodegradation; strategies to engineer PCB-degrading bacteria; PCB-degrading plant-microbe systems strategies; the structure, regulation and diversity of microbial genes encoding biodegradative enzymes. In addition there are excellent reviews detailing the application of the state-of-the-art molecular technologies to study biodegradative processes. Technologies covered are.
In Situ Bioremediation
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309048966
Category : Science
Languages : en
Pages : 225
Book Description
In situ bioremediationâ€"the use of microorganisms for on-site removal of contaminantsâ€"is potentially cheaper, faster, and safer than conventional cleanup methods. But in situ bioremediation is also clouded in uncertainty, controversy, and mistrust. This volume from the National Research Council provides direction for decisionmakers and offers detailed and readable explanations of: the processes involved in in situ bioremediation, circumstances in which it is best used, and methods of measurement, field testing, and modeling to evaluate the results of bioremediation projects. Bioremediation experts representing academic research, field practice, regulation, and industry provide accessible information and case examples; they explore how in situ bioremediation works, how it has developed since its first commercial use in 1972, and what research and education efforts are recommended for the future. The volume includes a series of perspective papers. The book will be immediately useful to policymakers, regulators, bioremediation practitioners and purchasers, environmental groups, concerned citizens, faculty, and students.
Publisher: National Academies Press
ISBN: 0309048966
Category : Science
Languages : en
Pages : 225
Book Description
In situ bioremediationâ€"the use of microorganisms for on-site removal of contaminantsâ€"is potentially cheaper, faster, and safer than conventional cleanup methods. But in situ bioremediation is also clouded in uncertainty, controversy, and mistrust. This volume from the National Research Council provides direction for decisionmakers and offers detailed and readable explanations of: the processes involved in in situ bioremediation, circumstances in which it is best used, and methods of measurement, field testing, and modeling to evaluate the results of bioremediation projects. Bioremediation experts representing academic research, field practice, regulation, and industry provide accessible information and case examples; they explore how in situ bioremediation works, how it has developed since its first commercial use in 1972, and what research and education efforts are recommended for the future. The volume includes a series of perspective papers. The book will be immediately useful to policymakers, regulators, bioremediation practitioners and purchasers, environmental groups, concerned citizens, faculty, and students.
Microbes and Enzymes in Soil Health and Bioremediation
Author: Ashok Kumar
Publisher: Springer Nature
ISBN: 9811391173
Category : Technology & Engineering
Languages : en
Pages : 407
Book Description
Microbial enzymes play a vital role in maintaining soil health and removing pollutants from contaminated land. Soil microflora is closely associated with maintaining soil fertility, and the use of chemical pesticides, fertilizers and other volatile sprays in agriculture threatens the health ofthe microbial population in the soil. Every single particle of healthy soil contains millions of bacteria, which interact with the nutrients available, sustaining the nutrient cycle and making this microflora an essential component of life on earth. How do microbes help in the nutrient cycle? Either by intracellular digestion of macromolecules and converting these into smaller units in their metabolic pathways, or by secreting enzymes into the extracellular environment to facilitate the conversion of complex macromolecules into micro-molecules that can be easily absorbed by other living species. To meet demands for energy and food for the growing global population, it is important to protect agricultural land from contamination and maintain its productivity. Heavy metal ions from contaminated land canenter crops, fish or aquatic organismsvia contaminated water, and theseare then taken up by the human body, where they can accumulate and alter the normal microflora. The microbiological component of the soil is ahighly complex system and is still not fully understood. How do microbes survive in the changing physicochemical environment of soil?. This book helps readers understand the mechanism, various routes of microbialsoil remediation, the interactionsof different genera, and how microbial enzymes support the sustainable restoration of healthy soil.
Publisher: Springer Nature
ISBN: 9811391173
Category : Technology & Engineering
Languages : en
Pages : 407
Book Description
Microbial enzymes play a vital role in maintaining soil health and removing pollutants from contaminated land. Soil microflora is closely associated with maintaining soil fertility, and the use of chemical pesticides, fertilizers and other volatile sprays in agriculture threatens the health ofthe microbial population in the soil. Every single particle of healthy soil contains millions of bacteria, which interact with the nutrients available, sustaining the nutrient cycle and making this microflora an essential component of life on earth. How do microbes help in the nutrient cycle? Either by intracellular digestion of macromolecules and converting these into smaller units in their metabolic pathways, or by secreting enzymes into the extracellular environment to facilitate the conversion of complex macromolecules into micro-molecules that can be easily absorbed by other living species. To meet demands for energy and food for the growing global population, it is important to protect agricultural land from contamination and maintain its productivity. Heavy metal ions from contaminated land canenter crops, fish or aquatic organismsvia contaminated water, and theseare then taken up by the human body, where they can accumulate and alter the normal microflora. The microbiological component of the soil is ahighly complex system and is still not fully understood. How do microbes survive in the changing physicochemical environment of soil?. This book helps readers understand the mechanism, various routes of microbialsoil remediation, the interactionsof different genera, and how microbial enzymes support the sustainable restoration of healthy soil.
Marine Microbial Bioremediation
Author: Anjana K. Vala
Publisher: CRC Press
ISBN: 9780367425333
Category : Marine bioremediation
Languages : en
Pages : 252
Book Description
"Due to increased industrialization and urbanization, the marine ecosystem is getting contaminated and it has become imperative to save this ecosystem that is the largest. The book focuses on marine microbial remediation aspects. Major marine pollutants their effect on marine ecosystems, and their removal by ecofriendly, sustainable approach bioremediation have been included. Marine biota due to their unique traits are promising candidates for bioremediation processes. Mechanistic aspects of microbial bioremediation in marine environment have also been discussed"--
Publisher: CRC Press
ISBN: 9780367425333
Category : Marine bioremediation
Languages : en
Pages : 252
Book Description
"Due to increased industrialization and urbanization, the marine ecosystem is getting contaminated and it has become imperative to save this ecosystem that is the largest. The book focuses on marine microbial remediation aspects. Major marine pollutants their effect on marine ecosystems, and their removal by ecofriendly, sustainable approach bioremediation have been included. Marine biota due to their unique traits are promising candidates for bioremediation processes. Mechanistic aspects of microbial bioremediation in marine environment have also been discussed"--
Advances in Biodegradation and Bioremediation of Industrial Waste
Author: Ram Chandra
Publisher: CRC Press
ISBN: 1498700551
Category : Science
Languages : en
Pages : 442
Book Description
Addresses a Global Challenge to Sustainable DevelopmentAdvances in Biodegradation and Bioremediation of Industrial Waste examines and compiles the latest information on the industrial waste biodegradation process and provides a comprehensive review. Dedicated to reducing pollutants generated by agriculturally contaminated soil, and plastic waste fr
Publisher: CRC Press
ISBN: 1498700551
Category : Science
Languages : en
Pages : 442
Book Description
Addresses a Global Challenge to Sustainable DevelopmentAdvances in Biodegradation and Bioremediation of Industrial Waste examines and compiles the latest information on the industrial waste biodegradation process and provides a comprehensive review. Dedicated to reducing pollutants generated by agriculturally contaminated soil, and plastic waste fr
Approaches in Bioremediation
Author: Ram Prasad
Publisher: Springer
ISBN: 3030023699
Category : Science
Languages : en
Pages : 413
Book Description
Bioremediation refers to the clean‐up of pollution in soil, groundwater, surface water, and air using typically microbiological processes. It uses naturally occurring bacteria and fungi or plants to degrade, transform or detoxify hazardous substances to human health or the environment. For bioremediation to be effective, microorganisms must enzymatically attack the pollutants and convert them to harmless products. As bioremediation can be effective only where environmental conditions permit microbial growth and action, its application often involves the management of ecological factors to allow microbial growth and degradation to continue at a faster rate. Like other technologies, bioremediation has its limitations. Some contaminants, such as chlorinated organic or high aromatic hydrocarbons, are resistant to microbial attack. They are degraded either gradually or not at all, hence, it is not easy to envisage the rates of clean-up for bioremediation implementation. Bioremediation represents a field of great expansion due to the important development of new technologies. Among them, several decades on metagenomics expansion has led to the detection of autochthonous microbiota that plays a key role during transformation. Transcriptomic guides us to know the expression of key genes and proteomics allow the characterization of proteins that conduct specific reactions. In this book we show specific technologies applied in bioremediation of main interest for research in the field, with special attention on fungi, which have been poorly studied microorganisms. Finally, new approaches in the field, such as CRISPR-CAS9, are also discussed. Lastly, it introduces management strategies, such as bioremediation application for managing affected environment and bioremediation approaches. Examples of successful bioremediation applications are illustrated in radionuclide entrapment and retardation, soil stabilization and remediation of polycyclic aromatic hydrocarbons, phenols, plastics or fluorinated compounds. Other emerging bioremediation methods include electro bioremediation, microbe-availed phytoremediation, genetic recombinant technologies in enhancing plants in accumulation of inorganic metals, and metalloids as well as degradation of organic pollutants, protein-metabolic engineering to increase bioremediation efficiency, including nanotechnology applications are also discussed.
Publisher: Springer
ISBN: 3030023699
Category : Science
Languages : en
Pages : 413
Book Description
Bioremediation refers to the clean‐up of pollution in soil, groundwater, surface water, and air using typically microbiological processes. It uses naturally occurring bacteria and fungi or plants to degrade, transform or detoxify hazardous substances to human health or the environment. For bioremediation to be effective, microorganisms must enzymatically attack the pollutants and convert them to harmless products. As bioremediation can be effective only where environmental conditions permit microbial growth and action, its application often involves the management of ecological factors to allow microbial growth and degradation to continue at a faster rate. Like other technologies, bioremediation has its limitations. Some contaminants, such as chlorinated organic or high aromatic hydrocarbons, are resistant to microbial attack. They are degraded either gradually or not at all, hence, it is not easy to envisage the rates of clean-up for bioremediation implementation. Bioremediation represents a field of great expansion due to the important development of new technologies. Among them, several decades on metagenomics expansion has led to the detection of autochthonous microbiota that plays a key role during transformation. Transcriptomic guides us to know the expression of key genes and proteomics allow the characterization of proteins that conduct specific reactions. In this book we show specific technologies applied in bioremediation of main interest for research in the field, with special attention on fungi, which have been poorly studied microorganisms. Finally, new approaches in the field, such as CRISPR-CAS9, are also discussed. Lastly, it introduces management strategies, such as bioremediation application for managing affected environment and bioremediation approaches. Examples of successful bioremediation applications are illustrated in radionuclide entrapment and retardation, soil stabilization and remediation of polycyclic aromatic hydrocarbons, phenols, plastics or fluorinated compounds. Other emerging bioremediation methods include electro bioremediation, microbe-availed phytoremediation, genetic recombinant technologies in enhancing plants in accumulation of inorganic metals, and metalloids as well as degradation of organic pollutants, protein-metabolic engineering to increase bioremediation efficiency, including nanotechnology applications are also discussed.