Author: Stephen A. Wainwright
Publisher: Princeton University Press
ISBN: 0691218099
Category : Science
Languages : en
Pages : 440
Book Description
This book deals with an interface between mechanical engineering and biology. Available for the first time in paperback, it reviews biological structural materials and systems and their mechanically important features and demonstrates that function at any particular level of biological integration is permitted and controlled by structure at lower levels of integration. Five chapters discuss the properties of materials in general and those of biomaterials in particular. The authors examine the design of skeletal elements and discuss animal and plant systems in terms of mechanical design. In a concluding chapter they investigate organisms in their environments and the insights gained from study of the mechanical aspects of their lives.
Mechanical Design in Organisms
Author: Stephen A. Wainwright
Publisher: Princeton University Press
ISBN: 0691218099
Category : Science
Languages : en
Pages : 440
Book Description
This book deals with an interface between mechanical engineering and biology. Available for the first time in paperback, it reviews biological structural materials and systems and their mechanically important features and demonstrates that function at any particular level of biological integration is permitted and controlled by structure at lower levels of integration. Five chapters discuss the properties of materials in general and those of biomaterials in particular. The authors examine the design of skeletal elements and discuss animal and plant systems in terms of mechanical design. In a concluding chapter they investigate organisms in their environments and the insights gained from study of the mechanical aspects of their lives.
Publisher: Princeton University Press
ISBN: 0691218099
Category : Science
Languages : en
Pages : 440
Book Description
This book deals with an interface between mechanical engineering and biology. Available for the first time in paperback, it reviews biological structural materials and systems and their mechanically important features and demonstrates that function at any particular level of biological integration is permitted and controlled by structure at lower levels of integration. Five chapters discuss the properties of materials in general and those of biomaterials in particular. The authors examine the design of skeletal elements and discuss animal and plant systems in terms of mechanical design. In a concluding chapter they investigate organisms in their environments and the insights gained from study of the mechanical aspects of their lives.
NASA Technical Note
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 544
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 544
Book Description
Michell Structures
Author: Tomasz Lewiński
Publisher: Springer
ISBN: 3319951807
Category : Science
Languages : en
Pages : 582
Book Description
The book covers the theory of Michell structures being the lightest and fully stressed systems of bars, designed within a given domain, possibly within the whole space, transmitting a given load towards a given support. Discovered already in 1904 by A.G.M. Michell, the structures named after him have attracted constant attention due to their peculiar feature of disclosing the optimal streams of stresses equilibrating a given load and thus determining the optimal layout of bars. The optimal layouts emerge from among all possible structural topologies, thus constituting unique designs being simultaneously light and stiff. The optimal structures turn out to be embedded in optimal vector fields covering the whole feasible domain. Key features include: a variationally consistent theory of bar systems, thin plates in bending and membrane shells; recapitulation of the theory of optimum design of trusses of minimum weight or of minimal compliance; the basis of 2D Michell theory for a single load case; kinematic and static approaches; 2D benchmark constructions including Hemp’s structures and optimal cantilevers; L-shape domain problems, three forces problem in 2D, bridge problems; revisiting the old - and delivering new - 3D benchmark solutions; extension to multiple load conditions; Prager-Rozvany grillages; the theory of funiculars and archgrids; the methods of optimum design of shape and material inspired by the theory of Michell structures, industrial applications. The book can be useful for graduate students, professional engineers and researchers specializing in the Optimum Design and in Topology Optimization in general.
Publisher: Springer
ISBN: 3319951807
Category : Science
Languages : en
Pages : 582
Book Description
The book covers the theory of Michell structures being the lightest and fully stressed systems of bars, designed within a given domain, possibly within the whole space, transmitting a given load towards a given support. Discovered already in 1904 by A.G.M. Michell, the structures named after him have attracted constant attention due to their peculiar feature of disclosing the optimal streams of stresses equilibrating a given load and thus determining the optimal layout of bars. The optimal layouts emerge from among all possible structural topologies, thus constituting unique designs being simultaneously light and stiff. The optimal structures turn out to be embedded in optimal vector fields covering the whole feasible domain. Key features include: a variationally consistent theory of bar systems, thin plates in bending and membrane shells; recapitulation of the theory of optimum design of trusses of minimum weight or of minimal compliance; the basis of 2D Michell theory for a single load case; kinematic and static approaches; 2D benchmark constructions including Hemp’s structures and optimal cantilevers; L-shape domain problems, three forces problem in 2D, bridge problems; revisiting the old - and delivering new - 3D benchmark solutions; extension to multiple load conditions; Prager-Rozvany grillages; the theory of funiculars and archgrids; the methods of optimum design of shape and material inspired by the theory of Michell structures, industrial applications. The book can be useful for graduate students, professional engineers and researchers specializing in the Optimum Design and in Topology Optimization in general.
Topology Design of Structures
Author: Martin P. Bendsøe
Publisher: Springer Science & Business Media
ISBN: 9401118043
Category : Mathematics
Languages : en
Pages : 564
Book Description
Proceedings of the NATO Advanced Research Workshop, Sesimbra, Portugal, June 20-26, 1992
Publisher: Springer Science & Business Media
ISBN: 9401118043
Category : Mathematics
Languages : en
Pages : 564
Book Description
Proceedings of the NATO Advanced Research Workshop, Sesimbra, Portugal, June 20-26, 1992
Topology Optimization in Structural and Continuum Mechanics
Author: George I. N. Rozvany
Publisher: Springer Science & Business Media
ISBN: 3709116430
Category : Science
Languages : en
Pages : 471
Book Description
The book covers new developments in structural topology optimization. Basic features and limitations of Michell’s truss theory, its extension to a broader class of support conditions, generalizations of truss topology optimization, and Michell continua are reviewed. For elastic bodies, the layout problems in linear elasticity are discussed and the method of relaxation by homogenization is outlined. The classical problem of free material design is shown to be reducible to a locking material problem, even in the multiload case. For structures subjected to dynamic loads, it is explained how they can be designed so that the structural eigenfrequencies of vibration are as far away as possible from a prescribed external excitation frequency (or a band of excitation frequencies) in order to avoid resonance phenomena with high vibration and noise levels. For diffusive and convective transport processes and multiphysics problems, applications of the density method are discussed. In order to take uncertainty in material parameters, geometry, and operating conditions into account, techniques of reliability-based design optimization are introduced and reviewed for their applicability to topology optimization.
Publisher: Springer Science & Business Media
ISBN: 3709116430
Category : Science
Languages : en
Pages : 471
Book Description
The book covers new developments in structural topology optimization. Basic features and limitations of Michell’s truss theory, its extension to a broader class of support conditions, generalizations of truss topology optimization, and Michell continua are reviewed. For elastic bodies, the layout problems in linear elasticity are discussed and the method of relaxation by homogenization is outlined. The classical problem of free material design is shown to be reducible to a locking material problem, even in the multiload case. For structures subjected to dynamic loads, it is explained how they can be designed so that the structural eigenfrequencies of vibration are as far away as possible from a prescribed external excitation frequency (or a band of excitation frequencies) in order to avoid resonance phenomena with high vibration and noise levels. For diffusive and convective transport processes and multiphysics problems, applications of the density method are discussed. In order to take uncertainty in material parameters, geometry, and operating conditions into account, techniques of reliability-based design optimization are introduced and reviewed for their applicability to topology optimization.
Building Information Modeling
Author: Nawari O. Nawari
Publisher: CRC Press
ISBN: 1138024821
Category : Technology & Engineering
Languages : en
Pages : 412
Book Description
BIM for Structural Engineering and Architecture Building Information Modeling: Framework for Structural Design outlines one of the most promising new developments in architecture, engineering, and construction (AEC). Building information modeling (BIM) is an information management and analysis technology that is changing the role of computation in the architectural and engineering industries. The innovative process constructs a database assembling all of the objects needed to build a specific structure. Instead of using a computer to produce a series of drawings that together describe the building, BIM creates a single illustration representing the building as a whole. This book highlights the BIM technology and explains how it is redefining the structural analysis and design of building structures. BIM as a Framework Enabler This book introduces a new framework—the structure and architecture synergy framework (SAS framework)—that helps develop and enhance the understanding of the fundamental principles of architectural analysis using BIM tools. Based upon three main components: the structural melody, structural poetry, and structural analysis, along with the BIM tools as the frame enabler, this new framework allows users to explore structural design as an art while also factoring in the principles of engineering. The framework stresses the influence structure can play in form generation and in defining spatial order and composition. By highlighting the interplay between architecture and structure, the book emphasizes the conceptual behaviors of structural systems and their aesthetic implications and enables readers to thoroughly understand the art and science of whole structural system concepts. Presents the use of BIM technology as part of a design process or framework that can lead to a more comprehensive, intelligent, and integrated building design Places special emphasis on the application of BIM technology for exploring the intimate relationship between structural engineering and architectural design Includes a discussion of current and emerging trends in structural engineering practice and the role of the structural engineer in building design using new BIM technologies Building Information Modeling: Framework for Structural Design provides a thorough understanding of architectural structures and introduces a new framework that revolutionizes the way building structures are designed and constructed.
Publisher: CRC Press
ISBN: 1138024821
Category : Technology & Engineering
Languages : en
Pages : 412
Book Description
BIM for Structural Engineering and Architecture Building Information Modeling: Framework for Structural Design outlines one of the most promising new developments in architecture, engineering, and construction (AEC). Building information modeling (BIM) is an information management and analysis technology that is changing the role of computation in the architectural and engineering industries. The innovative process constructs a database assembling all of the objects needed to build a specific structure. Instead of using a computer to produce a series of drawings that together describe the building, BIM creates a single illustration representing the building as a whole. This book highlights the BIM technology and explains how it is redefining the structural analysis and design of building structures. BIM as a Framework Enabler This book introduces a new framework—the structure and architecture synergy framework (SAS framework)—that helps develop and enhance the understanding of the fundamental principles of architectural analysis using BIM tools. Based upon three main components: the structural melody, structural poetry, and structural analysis, along with the BIM tools as the frame enabler, this new framework allows users to explore structural design as an art while also factoring in the principles of engineering. The framework stresses the influence structure can play in form generation and in defining spatial order and composition. By highlighting the interplay between architecture and structure, the book emphasizes the conceptual behaviors of structural systems and their aesthetic implications and enables readers to thoroughly understand the art and science of whole structural system concepts. Presents the use of BIM technology as part of a design process or framework that can lead to a more comprehensive, intelligent, and integrated building design Places special emphasis on the application of BIM technology for exploring the intimate relationship between structural engineering and architectural design Includes a discussion of current and emerging trends in structural engineering practice and the role of the structural engineer in building design using new BIM technologies Building Information Modeling: Framework for Structural Design provides a thorough understanding of architectural structures and introduces a new framework that revolutionizes the way building structures are designed and constructed.
Applied Mechanics Reviews
Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 736
Book Description
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 736
Book Description
Evolutionary Structural Optimization
Author: Y.M. Xie
Publisher: Springer
ISBN: 1447109856
Category : Technology & Engineering
Languages : en
Pages : 200
Book Description
Evolutionary Structural Optimization (ESO) is a design method based on the simple concept of gradually removing inefficient material from a structure as it is being designed. Through this method, the resulting structure will evolve towards its optimum shape. The latest techniques and results of ESO are presented here, illustrated by numerous clear and detailed examples. Sections cover the fundamental aspects of the method, the application to multiple load cases and multiple support environments, frequency optimization, stiffness and displacement constraints, buckling, jointed frame structures, shape optimization, and stress reduction. This is followed by a section describing Evolve97, a software package which will allow readers to try the ideas of ESO themselves and to solve their optimization problems. This software is provided on a computer diskette which accompanies the book.
Publisher: Springer
ISBN: 1447109856
Category : Technology & Engineering
Languages : en
Pages : 200
Book Description
Evolutionary Structural Optimization (ESO) is a design method based on the simple concept of gradually removing inefficient material from a structure as it is being designed. Through this method, the resulting structure will evolve towards its optimum shape. The latest techniques and results of ESO are presented here, illustrated by numerous clear and detailed examples. Sections cover the fundamental aspects of the method, the application to multiple load cases and multiple support environments, frequency optimization, stiffness and displacement constraints, buckling, jointed frame structures, shape optimization, and stress reduction. This is followed by a section describing Evolve97, a software package which will allow readers to try the ideas of ESO themselves and to solve their optimization problems. This software is provided on a computer diskette which accompanies the book.
Plates, Laminates And Shells: Asymptotic Analysis And Homogenization
Author: Tomasz Lewinski
Publisher: World Scientific
ISBN: 9814497177
Category : Mathematics
Languages : en
Pages : 765
Book Description
This book gives a systematic and comprehensive presentation of the results concerning effective behavior of elastic and plastic plates with periodic or quasiperiodic structure. One of the chapters covers the hitherto available results concerning the averaging problems in the linear and nonlinear shell models.A unified approach to the problems studied is based on modern variational and asymptotic methods, including the methods of variational inequalities as well as homogenization techniques. Duality arguments are also exploited. A significant part of the book deals with problems important for engineering practice, such as: statical analysis of highly nonhomogeneous plates and shells for which common discretization techniques fail to be efficient, assessing stiffness reduction of cracked [00n/900m]s laminates, and assessing ultimate loads for perfectly plastic plates and shells composed of repeated segments. When possible, the homogenization formulas are cast in closed form expressions. The formulas presented in this manner are then used in constructing regularized formulations of the fundamental optimization problems for plates and shells, since the regularization concepts are based on introducing the composite regions for which microstructural properties play the role of new design variables.
Publisher: World Scientific
ISBN: 9814497177
Category : Mathematics
Languages : en
Pages : 765
Book Description
This book gives a systematic and comprehensive presentation of the results concerning effective behavior of elastic and plastic plates with periodic or quasiperiodic structure. One of the chapters covers the hitherto available results concerning the averaging problems in the linear and nonlinear shell models.A unified approach to the problems studied is based on modern variational and asymptotic methods, including the methods of variational inequalities as well as homogenization techniques. Duality arguments are also exploited. A significant part of the book deals with problems important for engineering practice, such as: statical analysis of highly nonhomogeneous plates and shells for which common discretization techniques fail to be efficient, assessing stiffness reduction of cracked [00n/900m]s laminates, and assessing ultimate loads for perfectly plastic plates and shells composed of repeated segments. When possible, the homogenization formulas are cast in closed form expressions. The formulas presented in this manner are then used in constructing regularized formulations of the fundamental optimization problems for plates and shells, since the regularization concepts are based on introducing the composite regions for which microstructural properties play the role of new design variables.
Elastic Beams and Frames
Author: J D Renton
Publisher: Elsevier
ISBN: 0857099620
Category : Science
Languages : en
Pages : 423
Book Description
The book approaches the basic theory of structures from a different perspective from standard pedagogy. There is consideration of work and energy concepts as fundamental and the equations of statics derived from them. Likewise, these concepts, together with that of the characteristic response, are used in the derivation of beam theory. Plane sections remaining plane is then seen as a particular result for isotropic, homogeneous, prismatic beams. The general theory may still be used where none of these conditions holds, and can even be applied to trusses. It also corrects errors in the theory of beam shear. Special topics discussed include non-uniform torsion, the exact analysis of shear, anisotropy, advanced energy methods, optimum structures, and regular frames. Software provided in the book includes seven general purpose programs for analysis of plane, space frames with rigid or pinned joints, and uses the augmented Gaussian elimination process and dynamic storage techniques. - Approaches the basic theory of elastic beams and frames from a different perspective from standard pedagogy - Provides an introduction to more advanced ideas on the theory of structures and contains much additional material - Includes consideration of work and energy concepts as fundamental and the equations of statistics derived from them
Publisher: Elsevier
ISBN: 0857099620
Category : Science
Languages : en
Pages : 423
Book Description
The book approaches the basic theory of structures from a different perspective from standard pedagogy. There is consideration of work and energy concepts as fundamental and the equations of statics derived from them. Likewise, these concepts, together with that of the characteristic response, are used in the derivation of beam theory. Plane sections remaining plane is then seen as a particular result for isotropic, homogeneous, prismatic beams. The general theory may still be used where none of these conditions holds, and can even be applied to trusses. It also corrects errors in the theory of beam shear. Special topics discussed include non-uniform torsion, the exact analysis of shear, anisotropy, advanced energy methods, optimum structures, and regular frames. Software provided in the book includes seven general purpose programs for analysis of plane, space frames with rigid or pinned joints, and uses the augmented Gaussian elimination process and dynamic storage techniques. - Approaches the basic theory of elastic beams and frames from a different perspective from standard pedagogy - Provides an introduction to more advanced ideas on the theory of structures and contains much additional material - Includes consideration of work and energy concepts as fundamental and the equations of statistics derived from them