Author: G.P. Cherepanov
Publisher: Springer Science & Business Media
ISBN: 9401722625
Category : Science
Languages : en
Pages : 334
Book Description
Modern fracture mechanics considers phenomena at many levels, macro and micro; it is therefore inextricably linked to methods of theoretical and mathematical physics. This book introduces these sophisticated methods in a straightforward manner. The methods are applied to several important phenomena of solid state physics which impinge on fracture mechanics: adhesion, defect nucleation and growth, dislocation emission, sintering, the electron beam effect and fractal cracks. The book shows how the mathematical models for such processes may be set up, and how the equations so formulated may be solved and interpreted. The many open problems which are encountered will provide topics for MSc and PhD theses in fracture mechanics, and in theoretical and experimental physics. As a supplementary text, the book can be used in graduate level courses on fracture mechanics, solid matter physics, and mechanics of solids, or in a special course on the application of fracture mechanics methods in solid matter physics.
Methods of Fracture Mechanics: Solid Matter Physics
Author: G.P. Cherepanov
Publisher: Springer Science & Business Media
ISBN: 9401722625
Category : Science
Languages : en
Pages : 334
Book Description
Modern fracture mechanics considers phenomena at many levels, macro and micro; it is therefore inextricably linked to methods of theoretical and mathematical physics. This book introduces these sophisticated methods in a straightforward manner. The methods are applied to several important phenomena of solid state physics which impinge on fracture mechanics: adhesion, defect nucleation and growth, dislocation emission, sintering, the electron beam effect and fractal cracks. The book shows how the mathematical models for such processes may be set up, and how the equations so formulated may be solved and interpreted. The many open problems which are encountered will provide topics for MSc and PhD theses in fracture mechanics, and in theoretical and experimental physics. As a supplementary text, the book can be used in graduate level courses on fracture mechanics, solid matter physics, and mechanics of solids, or in a special course on the application of fracture mechanics methods in solid matter physics.
Publisher: Springer Science & Business Media
ISBN: 9401722625
Category : Science
Languages : en
Pages : 334
Book Description
Modern fracture mechanics considers phenomena at many levels, macro and micro; it is therefore inextricably linked to methods of theoretical and mathematical physics. This book introduces these sophisticated methods in a straightforward manner. The methods are applied to several important phenomena of solid state physics which impinge on fracture mechanics: adhesion, defect nucleation and growth, dislocation emission, sintering, the electron beam effect and fractal cracks. The book shows how the mathematical models for such processes may be set up, and how the equations so formulated may be solved and interpreted. The many open problems which are encountered will provide topics for MSc and PhD theses in fracture mechanics, and in theoretical and experimental physics. As a supplementary text, the book can be used in graduate level courses on fracture mechanics, solid matter physics, and mechanics of solids, or in a special course on the application of fracture mechanics methods in solid matter physics.
Fracture Mechanics
Author: Alan T. Zehnder
Publisher: Springer Science & Business Media
ISBN: 9400725957
Category : Science
Languages : en
Pages : 235
Book Description
Fracture mechanics is a vast and growing field. This book develops the basic elements needed for both fracture research and engineering practice. The emphasis is on continuum mechanics models for energy flows and crack-tip stress- and deformation fields in elastic and elastic-plastic materials. In addition to a brief discussion of computational fracture methods, the text includes practical sections on fracture criteria, fracture toughness testing, and methods for measuring stress intensity factors and energy release rates. Class-tested at Cornell, this book is designed for students, researchers and practitioners interested in understanding and contributing to a diverse and vital field of knowledge.
Publisher: Springer Science & Business Media
ISBN: 9400725957
Category : Science
Languages : en
Pages : 235
Book Description
Fracture mechanics is a vast and growing field. This book develops the basic elements needed for both fracture research and engineering practice. The emphasis is on continuum mechanics models for energy flows and crack-tip stress- and deformation fields in elastic and elastic-plastic materials. In addition to a brief discussion of computational fracture methods, the text includes practical sections on fracture criteria, fracture toughness testing, and methods for measuring stress intensity factors and energy release rates. Class-tested at Cornell, this book is designed for students, researchers and practitioners interested in understanding and contributing to a diverse and vital field of knowledge.
Finite Elements in Fracture Mechanics
Author: Meinhard Kuna
Publisher: Springer Science & Business Media
ISBN: 9400766807
Category : Science
Languages : en
Pages : 464
Book Description
Fracture mechanics has established itself as an important discipline of growing interest to those working to assess the safety, reliability and service life of engineering structures and materials. In order to calculate the loading situation at cracks and defects, nowadays numerical techniques like finite element method (FEM) have become indispensable tools for a broad range of applications. The present monograph provides an introduction to the essential concepts of fracture mechanics, its main goal being to procure the special techniques for FEM analysis of crack problems, which have to date only been mastered by experts. All kinds of static, dynamic and fatigue fracture problems are treated in two- and three-dimensional elastic and plastic structural components. The usage of the various solution techniques is demonstrated by means of sample problems selected from practical engineering case studies. The primary target group includes graduate students, researchers in academia and engineers in practice.
Publisher: Springer Science & Business Media
ISBN: 9400766807
Category : Science
Languages : en
Pages : 464
Book Description
Fracture mechanics has established itself as an important discipline of growing interest to those working to assess the safety, reliability and service life of engineering structures and materials. In order to calculate the loading situation at cracks and defects, nowadays numerical techniques like finite element method (FEM) have become indispensable tools for a broad range of applications. The present monograph provides an introduction to the essential concepts of fracture mechanics, its main goal being to procure the special techniques for FEM analysis of crack problems, which have to date only been mastered by experts. All kinds of static, dynamic and fatigue fracture problems are treated in two- and three-dimensional elastic and plastic structural components. The usage of the various solution techniques is demonstrated by means of sample problems selected from practical engineering case studies. The primary target group includes graduate students, researchers in academia and engineers in practice.
Fracture Mechanics of Piezoelectric and Ferroelectric Solids
Author: Daining Fang
Publisher: Springer Science & Business Media
ISBN: 3642300871
Category : Science
Languages : en
Pages : 430
Book Description
Fracture Mechanics of Piezoelectric and Ferroelectric Solids presents a systematic and comprehensive coverage of the fracture mechanics of piezoelectric/ferroelectric materials, which includes the theoretical analysis, numerical computations and experimental observations. The main emphasis is placed on the mechanics description of various crack problems such static, dynamic and interface fractures as well as the physical explanations for the mechanism of electrically induced fracture. The book is intended for postgraduate students, researchers and engineers in the fields of solid mechanics, applied physics, material science and mechanical engineering. Dr. Daining Fang is a professor at the School of Aerospace, Tsinghua University, China; Dr. Jinxi Liu is a professor at the Department of Engineering Mechanics, Shijiazhuang Railway Institute, China.
Publisher: Springer Science & Business Media
ISBN: 3642300871
Category : Science
Languages : en
Pages : 430
Book Description
Fracture Mechanics of Piezoelectric and Ferroelectric Solids presents a systematic and comprehensive coverage of the fracture mechanics of piezoelectric/ferroelectric materials, which includes the theoretical analysis, numerical computations and experimental observations. The main emphasis is placed on the mechanics description of various crack problems such static, dynamic and interface fractures as well as the physical explanations for the mechanism of electrically induced fracture. The book is intended for postgraduate students, researchers and engineers in the fields of solid mechanics, applied physics, material science and mechanical engineering. Dr. Daining Fang is a professor at the School of Aerospace, Tsinghua University, China; Dr. Jinxi Liu is a professor at the Department of Engineering Mechanics, Shijiazhuang Railway Institute, China.
IUTAM Symposium on Nonlinearity and Stochastic Structural Dynamics
Author: S Narayanan
Publisher: Springer Science & Business Media
ISBN: 9780792367338
Category : Mathematics
Languages : en
Pages : 360
Book Description
Nonlinearity and stochastic structural dynamics is of common interest to engineers and applied scientists belonging to many disciplines. Recent research in this area has been concentrated on the response and stability of nonlinear mechanical and structural systems subjected to random escitation. Simultaneously the focus of research has also been directed towards understanding intrinsic nonlinear phenomena like bifurcation and chaos in deterministic systems. These problems demand a high degree of sophistication in the analytical and numerical approaches. At the same time they arise from considerations of nonlinear system response to turbulence, earthquacke, wind, wave and guidancy excitations. The topic thus attracts votaries of both analytical rigour and practical applications. This books gives important and latest developments in the field presenting in a coherent fashion the research findings of leading international groups working in the area of nonlinear random vibration and chaos.
Publisher: Springer Science & Business Media
ISBN: 9780792367338
Category : Mathematics
Languages : en
Pages : 360
Book Description
Nonlinearity and stochastic structural dynamics is of common interest to engineers and applied scientists belonging to many disciplines. Recent research in this area has been concentrated on the response and stability of nonlinear mechanical and structural systems subjected to random escitation. Simultaneously the focus of research has also been directed towards understanding intrinsic nonlinear phenomena like bifurcation and chaos in deterministic systems. These problems demand a high degree of sophistication in the analytical and numerical approaches. At the same time they arise from considerations of nonlinear system response to turbulence, earthquacke, wind, wave and guidancy excitations. The topic thus attracts votaries of both analytical rigour and practical applications. This books gives important and latest developments in the field presenting in a coherent fashion the research findings of leading international groups working in the area of nonlinear random vibration and chaos.
IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials
Author: Martin Philip Bendsoe
Publisher: Springer Science & Business Media
ISBN: 1402047525
Category : Technology & Engineering
Languages : en
Pages : 602
Book Description
This volume offers edited papers presented at the IUTAM-Symposium Topological design optimization of structures, machines and materials - status and perspectives, October 2005. The papers cover the application of topological design optimization to fluid-solid interaction problems, acoustics problems, and to problems in biomechanics, as well as to other multiphysics problems. Also in focus are new basic modelling paradigms, covering new geometry modelling such as level-set methods and topological derivatives.
Publisher: Springer Science & Business Media
ISBN: 1402047525
Category : Technology & Engineering
Languages : en
Pages : 602
Book Description
This volume offers edited papers presented at the IUTAM-Symposium Topological design optimization of structures, machines and materials - status and perspectives, October 2005. The papers cover the application of topological design optimization to fluid-solid interaction problems, acoustics problems, and to problems in biomechanics, as well as to other multiphysics problems. Also in focus are new basic modelling paradigms, covering new geometry modelling such as level-set methods and topological derivatives.
Reanalysis of Structures
Author: Uri Kirsch
Publisher: Springer Science & Business Media
ISBN: 1402081987
Category : Technology & Engineering
Languages : en
Pages : 308
Book Description
This book deals with various computational procedures for multiple repeated analyses (reanalysis) of structures, and presents them in a unified approach. It meets the need for a general text covering the basic concepts and methods as well as recent developments in this area. To clarify the presentation, many illustrative examples and numerical results are demonstrated. Previous books on structural analysis do not cover most of the material presented here.
Publisher: Springer Science & Business Media
ISBN: 1402081987
Category : Technology & Engineering
Languages : en
Pages : 308
Book Description
This book deals with various computational procedures for multiple repeated analyses (reanalysis) of structures, and presents them in a unified approach. It meets the need for a general text covering the basic concepts and methods as well as recent developments in this area. To clarify the presentation, many illustrative examples and numerical results are demonstrated. Previous books on structural analysis do not cover most of the material presented here.
Nonlinear and Stochastic Dynamics of Compliant Offshore Structures
Author: Seon Mi Han
Publisher: Springer Science & Business Media
ISBN: 9401599122
Category : Technology & Engineering
Languages : en
Pages : 281
Book Description
The purpose of this monograph is to show how a compliant offshore structure in an ocean environment can be modeled in two and three di mensions. The monograph is divided into five parts. Chapter 1 provides the engineering motivation for this work, that is, offshore structures. These are very complex structures used for a variety of applications. It is possible to use beam models to initially study their dynamics. Chapter 2 is a review of variational methods, and thus includes the topics: princi ple of virtual work, D'Alembert's principle, Lagrange's equation, Hamil ton's principle, and the extended Hamilton's principle. These methods are used to derive the equations of motion throughout this monograph. Chapter 3 is a review of existing transverse beam models. They are the Euler-Bernoulli, Rayleigh, shear and Timoshenko models. The equa tions of motion are derived and solved analytically using the extended Hamilton's principle, as outlined in Chapter 2. For engineering purposes, the natural frequencies of the beam models are presented graphically as functions of normalized wave number and geometrical and physical pa rameters. Beam models are useful as representations of complex struc tures. In Chapter 4, a fluid force that is representative of those that act on offshore structures is formulated. The environmental load due to ocean current and random waves is obtained using Morison's equa tion. The random waves are formulated using the Pierson-Moskowitz spectrum with the Airy linear wave theory.
Publisher: Springer Science & Business Media
ISBN: 9401599122
Category : Technology & Engineering
Languages : en
Pages : 281
Book Description
The purpose of this monograph is to show how a compliant offshore structure in an ocean environment can be modeled in two and three di mensions. The monograph is divided into five parts. Chapter 1 provides the engineering motivation for this work, that is, offshore structures. These are very complex structures used for a variety of applications. It is possible to use beam models to initially study their dynamics. Chapter 2 is a review of variational methods, and thus includes the topics: princi ple of virtual work, D'Alembert's principle, Lagrange's equation, Hamil ton's principle, and the extended Hamilton's principle. These methods are used to derive the equations of motion throughout this monograph. Chapter 3 is a review of existing transverse beam models. They are the Euler-Bernoulli, Rayleigh, shear and Timoshenko models. The equa tions of motion are derived and solved analytically using the extended Hamilton's principle, as outlined in Chapter 2. For engineering purposes, the natural frequencies of the beam models are presented graphically as functions of normalized wave number and geometrical and physical pa rameters. Beam models are useful as representations of complex struc tures. In Chapter 4, a fluid force that is representative of those that act on offshore structures is formulated. The environmental load due to ocean current and random waves is obtained using Morison's equa tion. The random waves are formulated using the Pierson-Moskowitz spectrum with the Airy linear wave theory.
Inelastic Analysis of Structures under Variable Loads
Author: Dieter Weichert
Publisher: Springer Science & Business Media
ISBN: 9781402003820
Category : Technology & Engineering
Languages : en
Pages : 400
Book Description
The question whether a structure or a machine component can carry the applied loads, and with which margin of safety, or whether it will become unserviceable due to collapse or excessive inelastic deformations, has always been a major concern for civil and mechanical engineers. The development of methods to answer this technologically crucial question without analysing the evolution of the system under varying loads, has a long tradition that can be traced back even to the times of emerging mechanical sciences in the early 17th century. However, the scientific foundations of the theories underlying these methods, nowadays frequently called "direct", were established sporadically in the Thirties of the 20th century and systematically and rigorously in the Fifties. Further motivations for the development of direct analysis techniques in applied mechanics of solids and structures arise from the circumstance that in many engineering situations the external actions fluctuate according to time histories not a priori known except for some essential features, e.g. variation intervals. In such situations the critical events (or "limit states") to consider, besides plastic collapse, are incremental collapse (or "ratchetting") and alternating plastic yielding, namely lack of "shakedown". Non evolutionary, direct methods for ultimate limit state analysis of structures subjected to variably-repeated external actions are the objectives of most papers collected in this book, which also contains a few contributions on related topics.
Publisher: Springer Science & Business Media
ISBN: 9781402003820
Category : Technology & Engineering
Languages : en
Pages : 400
Book Description
The question whether a structure or a machine component can carry the applied loads, and with which margin of safety, or whether it will become unserviceable due to collapse or excessive inelastic deformations, has always been a major concern for civil and mechanical engineers. The development of methods to answer this technologically crucial question without analysing the evolution of the system under varying loads, has a long tradition that can be traced back even to the times of emerging mechanical sciences in the early 17th century. However, the scientific foundations of the theories underlying these methods, nowadays frequently called "direct", were established sporadically in the Thirties of the 20th century and systematically and rigorously in the Fifties. Further motivations for the development of direct analysis techniques in applied mechanics of solids and structures arise from the circumstance that in many engineering situations the external actions fluctuate according to time histories not a priori known except for some essential features, e.g. variation intervals. In such situations the critical events (or "limit states") to consider, besides plastic collapse, are incremental collapse (or "ratchetting") and alternating plastic yielding, namely lack of "shakedown". Non evolutionary, direct methods for ultimate limit state analysis of structures subjected to variably-repeated external actions are the objectives of most papers collected in this book, which also contains a few contributions on related topics.
Nonlinear Crack Models for Nonmetallic Materials
Author: Alberto Carpinteri
Publisher: Springer Science & Business Media
ISBN: 9401147000
Category : Science
Languages : en
Pages : 324
Book Description
In this volume a survey of the most relevant nonlinear crack models is provided, with the purpose of analyzing the nonlinear mechanical effects occurring at the tip of macrocracks in quasi-brittle materials - such as concrete, rocks, ceramics, polymers, high-strength metallic alloys - and in brittle-matrix fibre-reinforced composites. Such local effects, as, for example, plastic deformation, yielding, strain-hardening, strain-softening, mechanical damage, matrix microcracking, aggregate debonding, fibre bridging, fibre slippage, crazing, and so on, are properly described through different simplified models, representing the peculiarities of the phenomena involved. The models are introduced and described separately and then compared in the last part of the book. This volume will be of interest to students, professionals and researchers in the field of nonlinear fracture mechanics.
Publisher: Springer Science & Business Media
ISBN: 9401147000
Category : Science
Languages : en
Pages : 324
Book Description
In this volume a survey of the most relevant nonlinear crack models is provided, with the purpose of analyzing the nonlinear mechanical effects occurring at the tip of macrocracks in quasi-brittle materials - such as concrete, rocks, ceramics, polymers, high-strength metallic alloys - and in brittle-matrix fibre-reinforced composites. Such local effects, as, for example, plastic deformation, yielding, strain-hardening, strain-softening, mechanical damage, matrix microcracking, aggregate debonding, fibre bridging, fibre slippage, crazing, and so on, are properly described through different simplified models, representing the peculiarities of the phenomena involved. The models are introduced and described separately and then compared in the last part of the book. This volume will be of interest to students, professionals and researchers in the field of nonlinear fracture mechanics.