Author: Spiros Argyros
Publisher: American Mathematical Soc.
ISBN: 0821835211
Category : Mathematics
Languages : en
Pages : 128
Book Description
A general method producing Hereditarily Indecomposable (H I) Banach spaces is provided. We apply this method to construct a nonseparable H I Banach space $Y$. This space is the dual, as well as the second dual, of a separable H I Banach space.
Methods in the Theory of Hereditarily Indecomposable Banach Spaces
Author: Spiros Argyros
Publisher: American Mathematical Soc.
ISBN: 0821835211
Category : Mathematics
Languages : en
Pages : 128
Book Description
A general method producing Hereditarily Indecomposable (H I) Banach spaces is provided. We apply this method to construct a nonseparable H I Banach space $Y$. This space is the dual, as well as the second dual, of a separable H I Banach space.
Publisher: American Mathematical Soc.
ISBN: 0821835211
Category : Mathematics
Languages : en
Pages : 128
Book Description
A general method producing Hereditarily Indecomposable (H I) Banach spaces is provided. We apply this method to construct a nonseparable H I Banach space $Y$. This space is the dual, as well as the second dual, of a separable H I Banach space.
Methods in Banach Space Theory
Author: Jesus M. F. Castillo
Publisher: Cambridge University Press
ISBN: 0521685680
Category : Mathematics
Languages : en
Pages : 371
Book Description
A comprehensive overview of modern Banach space theory.
Publisher: Cambridge University Press
ISBN: 0521685680
Category : Mathematics
Languages : en
Pages : 371
Book Description
A comprehensive overview of modern Banach space theory.
Non-Associative Normed Algebras: Volume 1, The Vidav–Palmer and Gelfand–Naimark Theorems
Author: Miguel Cabrera García
Publisher: Cambridge University Press
ISBN: 1139992775
Category : Mathematics
Languages : en
Pages : 735
Book Description
This first systematic account of the basic theory of normed algebras, without assuming associativity, includes many new and unpublished results and is sure to become a central resource for researchers and graduate students in the field. This first volume focuses on the non-associative generalizations of (associative) C*-algebras provided by the so-called non-associative Gelfand–Naimark and Vidav–Palmer theorems, which give rise to alternative C*-algebras and non-commutative JB*-algebras, respectively. The relationship between non-commutative JB*-algebras and JB*-triples is also fully discussed. The second volume covers Zel'manov's celebrated work in Jordan theory to derive classification theorems for non-commutative JB*-algebras and JB*-triples, as well as other topics. The book interweaves pure algebra, geometry of normed spaces, and complex analysis, and includes a wealth of historical comments, background material, examples and exercises. The authors also provide an extensive bibliography.
Publisher: Cambridge University Press
ISBN: 1139992775
Category : Mathematics
Languages : en
Pages : 735
Book Description
This first systematic account of the basic theory of normed algebras, without assuming associativity, includes many new and unpublished results and is sure to become a central resource for researchers and graduate students in the field. This first volume focuses on the non-associative generalizations of (associative) C*-algebras provided by the so-called non-associative Gelfand–Naimark and Vidav–Palmer theorems, which give rise to alternative C*-algebras and non-commutative JB*-algebras, respectively. The relationship between non-commutative JB*-algebras and JB*-triples is also fully discussed. The second volume covers Zel'manov's celebrated work in Jordan theory to derive classification theorems for non-commutative JB*-algebras and JB*-triples, as well as other topics. The book interweaves pure algebra, geometry of normed spaces, and complex analysis, and includes a wealth of historical comments, background material, examples and exercises. The authors also provide an extensive bibliography.
Infinite Dimensional Complex Symplectic Spaces
Author: William Norrie Everitt
Publisher: American Mathematical Soc.
ISBN: 0821835459
Category : Mathematics
Languages : en
Pages : 94
Book Description
Complex symplectic spaces are non-trivial generalizations of the real symplectic spaces of classical analytical dynamics. This title presents a self-contained investigation of general complex symplectic spaces, and their Lagrangian subspaces, regardless of the finite or infinite dimensionality.
Publisher: American Mathematical Soc.
ISBN: 0821835459
Category : Mathematics
Languages : en
Pages : 94
Book Description
Complex symplectic spaces are non-trivial generalizations of the real symplectic spaces of classical analytical dynamics. This title presents a self-contained investigation of general complex symplectic spaces, and their Lagrangian subspaces, regardless of the finite or infinite dimensionality.
The Complex Monge-Ampere Equation and Pluripotential Theory
Author: Sławomir Kołodziej
Publisher: American Mathematical Soc.
ISBN: 082183763X
Category : Mathematics
Languages : en
Pages : 82
Book Description
We collect here results on the existence and stability of weak solutions of complex Monge-Ampere equation proved by applying pluripotential theory methods and obtained in past three decades. First we set the stage introducing basic concepts and theorems of pluripotential theory. Then the Dirichlet problem for the complex Monge-Ampere equation is studied. The main goal is to give possibly detailed description of the nonnegative Borel measures which on the right hand side of the equation give rise to plurisubharmonic solutions satisfying additional requirements such as continuity, boundedness or some weaker ones. In the last part, the methods of pluripotential theory are implemented to prove the existence and stability of weak solutions of the complex Monge-Ampere equation on compact Kahler manifolds. This is a generalization of the Calabi-Yau theorem.
Publisher: American Mathematical Soc.
ISBN: 082183763X
Category : Mathematics
Languages : en
Pages : 82
Book Description
We collect here results on the existence and stability of weak solutions of complex Monge-Ampere equation proved by applying pluripotential theory methods and obtained in past three decades. First we set the stage introducing basic concepts and theorems of pluripotential theory. Then the Dirichlet problem for the complex Monge-Ampere equation is studied. The main goal is to give possibly detailed description of the nonnegative Borel measures which on the right hand side of the equation give rise to plurisubharmonic solutions satisfying additional requirements such as continuity, boundedness or some weaker ones. In the last part, the methods of pluripotential theory are implemented to prove the existence and stability of weak solutions of the complex Monge-Ampere equation on compact Kahler manifolds. This is a generalization of the Calabi-Yau theorem.
The Complete Dimension Theory of Partially Ordered Systems with Equivalence and Orthogonality
Author: K. R. Goodearl
Publisher: American Mathematical Soc.
ISBN: 0821837168
Category : Mathematics
Languages : en
Pages : 134
Book Description
Introduction Partial commutative monoids Continuous dimension scales Espaliers Classes of espaliers Bibliography Index
Publisher: American Mathematical Soc.
ISBN: 0821837168
Category : Mathematics
Languages : en
Pages : 134
Book Description
Introduction Partial commutative monoids Continuous dimension scales Espaliers Classes of espaliers Bibliography Index
Moduli Spaces of Polynomials in Two Variables
Author: Javier Fernández de Bobadilla
Publisher: American Mathematical Soc.
ISBN: 0821835939
Category : Mathematics
Languages : en
Pages : 154
Book Description
Investigates the geometry of the orbit space. This book associates a graph with each polynomial in two variables that encodes part of its geometric properties at infinity. It also defines a partition of $\mathbb{C} x, y]$ imposing that the polynomials in the same stratum are the polynomials with a fixed associated graph
Publisher: American Mathematical Soc.
ISBN: 0821835939
Category : Mathematics
Languages : en
Pages : 154
Book Description
Investigates the geometry of the orbit space. This book associates a graph with each polynomial in two variables that encodes part of its geometric properties at infinity. It also defines a partition of $\mathbb{C} x, y]$ imposing that the polynomials in the same stratum are the polynomials with a fixed associated graph
The Calculus of One-Sided $M$-Ideals and Multipliers in Operator Spaces
Author: David P. Blecher
Publisher: American Mathematical Soc.
ISBN: 0821838237
Category : Mathematics
Languages : en
Pages : 102
Book Description
The theory of one-sided $M$-ideals and multipliers of operator spaces is simultaneously a generalization of classical $M$-ideals, ideals in operator algebras, and aspects of the theory of Hilbert $C*$-modules and their maps. Here we give a systematic exposition of this theory. The main part of this memoir consists of a 'calculus' for one-sided $M$-ideals and multipliers, i.e. a collection of the properties of one-sided $M$-ideals and multipliers with respect to the basic constructions met in functional analysis. This is intended to be a reference tool for 'noncommutative functional analysts' who may encounter a one-sided $M$-ideal or multiplier in their work.
Publisher: American Mathematical Soc.
ISBN: 0821838237
Category : Mathematics
Languages : en
Pages : 102
Book Description
The theory of one-sided $M$-ideals and multipliers of operator spaces is simultaneously a generalization of classical $M$-ideals, ideals in operator algebras, and aspects of the theory of Hilbert $C*$-modules and their maps. Here we give a systematic exposition of this theory. The main part of this memoir consists of a 'calculus' for one-sided $M$-ideals and multipliers, i.e. a collection of the properties of one-sided $M$-ideals and multipliers with respect to the basic constructions met in functional analysis. This is intended to be a reference tool for 'noncommutative functional analysts' who may encounter a one-sided $M$-ideal or multiplier in their work.
Ramsey Methods in Analysis
Author: Spiros A. Argyros
Publisher: Springer Science & Business Media
ISBN: 3764373601
Category : Mathematics
Languages : en
Pages : 258
Book Description
This book contains two sets of notes prepared for the Advanced Course on R- sey Methods in Analysis given at the Centre de Recerca Matem` atica in January 2004, as part of its year-long research programme on Set Theory and its Appli- tions. The common goal of the two sets of notes is to help young mathematicians enter a very active area of research lying on the borderline between analysis and combinatorics. The solution of the distortion problem for the Hilbert space, the unconditional basic sequence problem for Banach spaces, and the Banach ho- geneous space problem are samples of the most important recent advances in this area, and our two sets of notes will give some account of this. But our main goal was to try to expose the general principles and methods that lie hidden behind and are most likely useful for further developments. The goal of the ?rst set of notes is to describe a general method of building norms with desired properties, a method that is clearly relevant when testing any sort of intuition about the in?nite-dimensional geometry of Banach spaces. The goal of the second set of notes is to expose Ramsey-theoretic methods relevant for describing the rough structure present in this sort of geometry. We would like to thank the coordinator of the Advanced Course, Joan Ba- ria, and the director of the CRM, Manuel Castellet, for giving us this challenging but rewarding opportunity. Part A SaturatedandConditional StructuresinBanachSpaces SpirosA.
Publisher: Springer Science & Business Media
ISBN: 3764373601
Category : Mathematics
Languages : en
Pages : 258
Book Description
This book contains two sets of notes prepared for the Advanced Course on R- sey Methods in Analysis given at the Centre de Recerca Matem` atica in January 2004, as part of its year-long research programme on Set Theory and its Appli- tions. The common goal of the two sets of notes is to help young mathematicians enter a very active area of research lying on the borderline between analysis and combinatorics. The solution of the distortion problem for the Hilbert space, the unconditional basic sequence problem for Banach spaces, and the Banach ho- geneous space problem are samples of the most important recent advances in this area, and our two sets of notes will give some account of this. But our main goal was to try to expose the general principles and methods that lie hidden behind and are most likely useful for further developments. The goal of the ?rst set of notes is to describe a general method of building norms with desired properties, a method that is clearly relevant when testing any sort of intuition about the in?nite-dimensional geometry of Banach spaces. The goal of the second set of notes is to expose Ramsey-theoretic methods relevant for describing the rough structure present in this sort of geometry. We would like to thank the coordinator of the Advanced Course, Joan Ba- ria, and the director of the CRM, Manuel Castellet, for giving us this challenging but rewarding opportunity. Part A SaturatedandConditional StructuresinBanachSpaces SpirosA.
Kahler Spaces, Nilpotent Orbits, and Singular Reduction
Author: Johannes Huebschmann
Publisher: American Mathematical Soc.
ISBN: 0821835726
Category : Mathematics
Languages : en
Pages : 110
Book Description
For a stratified symplectic space, a suitable concept of stratified Kahler polarization encapsulates Kahler polarizations on the strata and the behaviour of the polarizations across the strata and leads to the notion of stratified Kahler space which establishes an intimate relationship between nilpotent orbits, singular reduction, invariant theory, reductive dual pairs, Jordan triple systems, symmetric domains, and pre-homogeneous spaces: The closure of a holomorphic nilpotent orbit or, equivalently, the closure of the stratum of the associated pre-homogeneous space of parabolic type carries a (positive) normal Kahler structure. In the world of singular Poisson geometry, the closures of principal holomorphic nilpotent orbits, positive definite hermitian JTS's, and certain pre-homogeneous spaces appear as different incarnations of the same structure. The closure of the principal holomorphic nilpotent orbit arises from a semisimple holomorphic orbit by contraction. Symplectic reduction carries a positive Kahler manifold to a positive normal Kahler space in such a way that the sheaf of germs of polarized functions coincides with the ordinary sheaf of germs of holomorphic functions. Symplectic reduction establishes a close relationship between singular reduced spaces and nilpotent orbits of the dual groups. Projectivization of holomorphic nilpotent orbits yields exotic (positive) stratified Kahler structures on complex projective spaces and on certain complex projective varieties including complex projective quadrics. The space of (in general twisted) representations of the fundamental group of a closed surface in a compact Lie group or, equivalently, a moduli space of central Yang-Mills connections on a principal bundle over a surface, inherits a (positive) normal (stratified) Kahler structure. Physical examples are provided by certain reduced spaces arising from angular momentum zero.
Publisher: American Mathematical Soc.
ISBN: 0821835726
Category : Mathematics
Languages : en
Pages : 110
Book Description
For a stratified symplectic space, a suitable concept of stratified Kahler polarization encapsulates Kahler polarizations on the strata and the behaviour of the polarizations across the strata and leads to the notion of stratified Kahler space which establishes an intimate relationship between nilpotent orbits, singular reduction, invariant theory, reductive dual pairs, Jordan triple systems, symmetric domains, and pre-homogeneous spaces: The closure of a holomorphic nilpotent orbit or, equivalently, the closure of the stratum of the associated pre-homogeneous space of parabolic type carries a (positive) normal Kahler structure. In the world of singular Poisson geometry, the closures of principal holomorphic nilpotent orbits, positive definite hermitian JTS's, and certain pre-homogeneous spaces appear as different incarnations of the same structure. The closure of the principal holomorphic nilpotent orbit arises from a semisimple holomorphic orbit by contraction. Symplectic reduction carries a positive Kahler manifold to a positive normal Kahler space in such a way that the sheaf of germs of polarized functions coincides with the ordinary sheaf of germs of holomorphic functions. Symplectic reduction establishes a close relationship between singular reduced spaces and nilpotent orbits of the dual groups. Projectivization of holomorphic nilpotent orbits yields exotic (positive) stratified Kahler structures on complex projective spaces and on certain complex projective varieties including complex projective quadrics. The space of (in general twisted) representations of the fundamental group of a closed surface in a compact Lie group or, equivalently, a moduli space of central Yang-Mills connections on a principal bundle over a surface, inherits a (positive) normal (stratified) Kahler structure. Physical examples are provided by certain reduced spaces arising from angular momentum zero.