Author: M. Zouhair Atassi
Publisher: Springer Science & Business Media
ISBN: 148991031X
Category : Science
Languages : en
Pages : 522
Book Description
The MPSA international conference is held in a different country every two years. It is devoted to methods of determining protein structure with emphasis on chemistry and sequence analysis. Until the ninth conference, MPSA was an acronym for Methods in Protein Sequence Analysis. To give the conference more flexibility and breadth, the Scientific Advisory Committee of the lOth MPSA decided to change the name to Methods in Protein Structure Analysis; however, the emphasis remains on "methods" and on "chemistry. " In fact, this is the only major conference that is devoted to methods. The MPSA conference is truly international, a fact clearly reflected by the composi tion of its Scientific Advisory Committee. The Scientific Advisory Committee oversees the scientific direction of the MPSA and elects the chairman of the conference. Members of the committee are elected by active members, based on scientific standing and activity. The chairman, subject to approval of the Scientific Advisory Committee, appoints the Organizing Committee. It is this latter committee that puts the conference together. The lectures of the MPSA have traditionally been published in a special proceedings issue. This is different from, and more detailed than, the special MPSA issue of the Journal of Protein Chemistry in which only a brief description of the talks is given in short papers and abstracts. In the I Oth MPSA, about half the talks are by invited speakers and the remainder were selected from submitted short papers and abstracts.
Methods in Protein Structure Analysis
Mathematical Methods for Protein Structure Analysis and Design
Author: Concettina Guerra
Publisher: Springer Science & Business Media
ISBN: 3540401040
Category : Mathematics
Languages : en
Pages : 161
Book Description
The papers collected in this volume reproduce contributions by leading sch- arstoaninternationalschoolandworkshopwhichwasorganizedandheldwith thegoaloftakinga snapshotofadiscipline undertumultuous growth. Indeed, the area of protein folding, docking and alignment is developing in response to needs for a mix of heterogeneous expertise spanning biology, chemistry, mathematics, computer science, and statistics, among others. Some of the problems encountered in this area are not only important for the scienti?c challenges they pose, but also for the opportunities they disclose intermsofmedicalandindustrialexploitation. Atypicalexampleiso?eredby protein-drug interaction (docking), a problem posing daunting computational problems at the crossroads of geometry, physics and chemistry, and, at the same time, a problem with unimaginable implications for the pharmacopoeia of the future. The schoolfocused on problems posed by the study of the mechanisms - hind protein folding, and explored di?erent ways of attacking these problems under objective evaluations of the methods. Together with a relatively small core of consolidated knowledge and tools, important re?ections were brought to this e?ort by studies in a multitude of directions and approaches. It is obviously impossible to predict which, if any, among these techniques will prove completely successful, but it is precisely the implicit dialectic among them that best conveys the current ?avor of the ?eld. Such unique diversity and richness inspired the format of the meeting, and also explains the slight departure of the present volume from the typical format in this series: the exposition of the current sediment is complemented here by a selection of quali?ed specialized contributions.
Publisher: Springer Science & Business Media
ISBN: 3540401040
Category : Mathematics
Languages : en
Pages : 161
Book Description
The papers collected in this volume reproduce contributions by leading sch- arstoaninternationalschoolandworkshopwhichwasorganizedandheldwith thegoaloftakinga snapshotofadiscipline undertumultuous growth. Indeed, the area of protein folding, docking and alignment is developing in response to needs for a mix of heterogeneous expertise spanning biology, chemistry, mathematics, computer science, and statistics, among others. Some of the problems encountered in this area are not only important for the scienti?c challenges they pose, but also for the opportunities they disclose intermsofmedicalandindustrialexploitation. Atypicalexampleiso?eredby protein-drug interaction (docking), a problem posing daunting computational problems at the crossroads of geometry, physics and chemistry, and, at the same time, a problem with unimaginable implications for the pharmacopoeia of the future. The schoolfocused on problems posed by the study of the mechanisms - hind protein folding, and explored di?erent ways of attacking these problems under objective evaluations of the methods. Together with a relatively small core of consolidated knowledge and tools, important re?ections were brought to this e?ort by studies in a multitude of directions and approaches. It is obviously impossible to predict which, if any, among these techniques will prove completely successful, but it is precisely the implicit dialectic among them that best conveys the current ?avor of the ?eld. Such unique diversity and richness inspired the format of the meeting, and also explains the slight departure of the present volume from the typical format in this series: the exposition of the current sediment is complemented here by a selection of quali?ed specialized contributions.
Introduction to Protein Structure Prediction
Author: Huzefa Rangwala
Publisher: John Wiley & Sons
ISBN: 111809946X
Category : Science
Languages : en
Pages : 611
Book Description
A look at the methods and algorithms used to predict protein structure A thorough knowledge of the function and structure of proteins is critical for the advancement of biology and the life sciences as well as the development of better drugs, higher-yield crops, and even synthetic bio-fuels. To that end, this reference sheds light on the methods used for protein structure prediction and reveals the key applications of modeled structures. This indispensable book covers the applications of modeled protein structures and unravels the relationship between pure sequence information and three-dimensional structure, which continues to be one of the greatest challenges in molecular biology. With this resource, readers will find an all-encompassing examination of the problems, methods, tools, servers, databases, and applications of protein structure prediction and they will acquire unique insight into the future applications of the modeled protein structures. The book begins with a thorough introduction to the protein structure prediction problem and is divided into four themes: a background on structure prediction, the prediction of structural elements, tertiary structure prediction, and functional insights. Within those four sections, the following topics are covered: Databases and resources that are commonly used for protein structure prediction The structure prediction flagship assessment (CASP) and the protein structure initiative (PSI) Definitions of recurring substructures and the computational approaches used for solving sequence problems Difficulties with contact map prediction and how sophisticated machine learning methods can solve those problems Structure prediction methods that rely on homology modeling, threading, and fragment assembly Hybrid methods that achieve high-resolution protein structures Parts of the protein structure that may be conserved and used to interact with other biomolecules How the loop prediction problem can be used for refinement of the modeled structures The computational model that detects the differences between protein structure and its modeled mutant Whether working in the field of bioinformatics or molecular biology research or taking courses in protein modeling, readers will find the content in this book invaluable.
Publisher: John Wiley & Sons
ISBN: 111809946X
Category : Science
Languages : en
Pages : 611
Book Description
A look at the methods and algorithms used to predict protein structure A thorough knowledge of the function and structure of proteins is critical for the advancement of biology and the life sciences as well as the development of better drugs, higher-yield crops, and even synthetic bio-fuels. To that end, this reference sheds light on the methods used for protein structure prediction and reveals the key applications of modeled structures. This indispensable book covers the applications of modeled protein structures and unravels the relationship between pure sequence information and three-dimensional structure, which continues to be one of the greatest challenges in molecular biology. With this resource, readers will find an all-encompassing examination of the problems, methods, tools, servers, databases, and applications of protein structure prediction and they will acquire unique insight into the future applications of the modeled protein structures. The book begins with a thorough introduction to the protein structure prediction problem and is divided into four themes: a background on structure prediction, the prediction of structural elements, tertiary structure prediction, and functional insights. Within those four sections, the following topics are covered: Databases and resources that are commonly used for protein structure prediction The structure prediction flagship assessment (CASP) and the protein structure initiative (PSI) Definitions of recurring substructures and the computational approaches used for solving sequence problems Difficulties with contact map prediction and how sophisticated machine learning methods can solve those problems Structure prediction methods that rely on homology modeling, threading, and fragment assembly Hybrid methods that achieve high-resolution protein structures Parts of the protein structure that may be conserved and used to interact with other biomolecules How the loop prediction problem can be used for refinement of the modeled structures The computational model that detects the differences between protein structure and its modeled mutant Whether working in the field of bioinformatics or molecular biology research or taking courses in protein modeling, readers will find the content in this book invaluable.
Protein Structure Prediction
Author: David Webster
Publisher: Springer Science & Business Media
ISBN: 1592593682
Category : Science
Languages : en
Pages : 425
Book Description
The number of protein sequences grows each year, yet the number of structures deposited in the Protein Data Bank remains relatively small. The importance of protein structure prediction cannot be overemphasized, and this volume is a timely addition to the literature in this field. Protein Structure Prediction: Methods and Protocols is a departure from the normal Methods in Molecular Biology series format. By its very nature, protein structure prediction demands that there be a greater mix of theoretical and practical aspects than is normally seen in this series. This book is aimed at both the novice and the experienced researcher who wish for detailed inf- mation in the field of protein structure prediction; a major intention here is to include important information that is needed in the day-to-day work of a research scientist, important information that is not always decipherable in scientific literature. Protein Structure Prediction: Methods and Protocols covers the topic of protein structure prediction in an eclectic fashion, detailing aspects of pred- tion that range from sequence analysis (a starting point for many algorithms) to secondary and tertiary methods, on into the prediction of docked complexes (an essential point in order to fully understand biological function). As this volume progresses, the authors contribute their expert knowledge of protein structure prediction to many disciplines, such as the identification of motifs and domains, the comparative modeling of proteins, and ab initio approaches to protein loop, side chain, and protein prediction.
Publisher: Springer Science & Business Media
ISBN: 1592593682
Category : Science
Languages : en
Pages : 425
Book Description
The number of protein sequences grows each year, yet the number of structures deposited in the Protein Data Bank remains relatively small. The importance of protein structure prediction cannot be overemphasized, and this volume is a timely addition to the literature in this field. Protein Structure Prediction: Methods and Protocols is a departure from the normal Methods in Molecular Biology series format. By its very nature, protein structure prediction demands that there be a greater mix of theoretical and practical aspects than is normally seen in this series. This book is aimed at both the novice and the experienced researcher who wish for detailed inf- mation in the field of protein structure prediction; a major intention here is to include important information that is needed in the day-to-day work of a research scientist, important information that is not always decipherable in scientific literature. Protein Structure Prediction: Methods and Protocols covers the topic of protein structure prediction in an eclectic fashion, detailing aspects of pred- tion that range from sequence analysis (a starting point for many algorithms) to secondary and tertiary methods, on into the prediction of docked complexes (an essential point in order to fully understand biological function). As this volume progresses, the authors contribute their expert knowledge of protein structure prediction to many disciplines, such as the identification of motifs and domains, the comparative modeling of proteins, and ab initio approaches to protein loop, side chain, and protein prediction.
Methods for Protein Analysis
Author: Robert A. Copeland
Publisher: Springer Science & Business Media
ISBN: 1475715056
Category : Science
Languages : en
Pages : 238
Book Description
As protein science continues to become an increasingly important aspect of academic and commercial sciences and technology, the need has arisen for a ready source of laboratory protocols for the analysis and evaluation of these biological polymers. Methods for Protein Analysis presents the methods most relevant to the generalist bench scientist working with proteins. A concise yet thorough summary, it covers laboratory methods that can be reasonably performed in a standard protein laboratory, without specialized equipment or expertise. Taking a how to approach, this book examines the techniques used to answer common protein analytical questions and describes methods useful in daily laboratory work. Methods for Protein Analysis is the ideal reference for protein laboratories in academic, government and industrial settings. It is an essential benchtop manual for first-year graduate students beginning their laboratory experience as well as for chemists, biochemists, and molecular biologists in the pharmaceutical, biotechnological, food and specialty chemical industries, and for analysts concerned with the purity and structural integrity of protein. Featuring illustrations and a convenient spiral binding, this guide offers a glossary of common abbreviations and a list of suppliers for protein science.
Publisher: Springer Science & Business Media
ISBN: 1475715056
Category : Science
Languages : en
Pages : 238
Book Description
As protein science continues to become an increasingly important aspect of academic and commercial sciences and technology, the need has arisen for a ready source of laboratory protocols for the analysis and evaluation of these biological polymers. Methods for Protein Analysis presents the methods most relevant to the generalist bench scientist working with proteins. A concise yet thorough summary, it covers laboratory methods that can be reasonably performed in a standard protein laboratory, without specialized equipment or expertise. Taking a how to approach, this book examines the techniques used to answer common protein analytical questions and describes methods useful in daily laboratory work. Methods for Protein Analysis is the ideal reference for protein laboratories in academic, government and industrial settings. It is an essential benchtop manual for first-year graduate students beginning their laboratory experience as well as for chemists, biochemists, and molecular biologists in the pharmaceutical, biotechnological, food and specialty chemical industries, and for analysts concerned with the purity and structural integrity of protein. Featuring illustrations and a convenient spiral binding, this guide offers a glossary of common abbreviations and a list of suppliers for protein science.
Methods in Protein Structure and Stability Analysis: Conformational stability, size, shape, and surface of protein molecules
Author: Vladimir N. Uversky
Publisher: Nova Publishers
ISBN: 9781600217043
Category : Science
Languages : en
Pages : 414
Book Description
Protein research is a frontier field in science. Proteins are widely distributed in plants and animals and are the principal constituents of the protoplasm of all cells, and consist essentially of combinations of a-amino acids in peptide linkages. Twenty different amino acids are commonly found in proteins, and serve as enzymes, structural elements, hormones, immunoglobulins, etc., and are involved throughout the body, and in photosynthesis. This book gathers new leading-edge research from throughout the world in this exciting and exploding field of research.
Publisher: Nova Publishers
ISBN: 9781600217043
Category : Science
Languages : en
Pages : 414
Book Description
Protein research is a frontier field in science. Proteins are widely distributed in plants and animals and are the principal constituents of the protoplasm of all cells, and consist essentially of combinations of a-amino acids in peptide linkages. Twenty different amino acids are commonly found in proteins, and serve as enzymes, structural elements, hormones, immunoglobulins, etc., and are involved throughout the body, and in photosynthesis. This book gathers new leading-edge research from throughout the world in this exciting and exploding field of research.
From Protein Structure to Function with Bioinformatics
Author: Daniel John Rigden
Publisher: Springer Science & Business Media
ISBN: 1402090587
Category : Science
Languages : en
Pages : 330
Book Description
Proteins lie at the heart of almost all biological processes and have an incredibly wide range of activities. Central to the function of all proteins is their ability to adopt, stably or sometimes transiently, structures that allow for interaction with other molecules. An understanding of the structure of a protein can therefore lead us to a much improved picture of its molecular function. This realisation has been a prime motivation of recent Structural Genomics projects, involving large-scale experimental determination of protein structures, often those of proteins about which little is known of function. These initiatives have, in turn, stimulated the massive development of novel methods for prediction of protein function from structure. Since model structures may also take advantage of new function prediction algorithms, the first part of the book deals with the various ways in which protein structures may be predicted or inferred, including specific treatment of membrane and intrinsically disordered proteins. A detailed consideration of current structure-based function prediction methodologies forms the second part of this book, which concludes with two chapters, focusing specifically on case studies, designed to illustrate the real-world application of these methods. With bang up-to-date texts from world experts, and abundant links to publicly available resources, this book will be invaluable to anyone who studies proteins and the endlessly fascinating relationship between their structure and function.
Publisher: Springer Science & Business Media
ISBN: 1402090587
Category : Science
Languages : en
Pages : 330
Book Description
Proteins lie at the heart of almost all biological processes and have an incredibly wide range of activities. Central to the function of all proteins is their ability to adopt, stably or sometimes transiently, structures that allow for interaction with other molecules. An understanding of the structure of a protein can therefore lead us to a much improved picture of its molecular function. This realisation has been a prime motivation of recent Structural Genomics projects, involving large-scale experimental determination of protein structures, often those of proteins about which little is known of function. These initiatives have, in turn, stimulated the massive development of novel methods for prediction of protein function from structure. Since model structures may also take advantage of new function prediction algorithms, the first part of the book deals with the various ways in which protein structures may be predicted or inferred, including specific treatment of membrane and intrinsically disordered proteins. A detailed consideration of current structure-based function prediction methodologies forms the second part of this book, which concludes with two chapters, focusing specifically on case studies, designed to illustrate the real-world application of these methods. With bang up-to-date texts from world experts, and abundant links to publicly available resources, this book will be invaluable to anyone who studies proteins and the endlessly fascinating relationship between their structure and function.
Protein Bioinformatics
Author: Ingvar Eidhammer
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 384
Book Description
Pairwise global alignment of sequences. Pairwise local alignment and database search. Statical analysis. Multiple global alignment and phylogenetic trees. Scoring matrices. Profiles. Sequence patterns. Structures and structure descriptions. Superposition and Dynamic programming. Geometric techniques. Clustering: Combining local similarities. Significance and assessment of structure comparisons. Multiple structure comparison. Protein structure classification. Structure prediction: Threading. Basics in mathematics, probability and algorithms. Introduction to molecular biology.
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 384
Book Description
Pairwise global alignment of sequences. Pairwise local alignment and database search. Statical analysis. Multiple global alignment and phylogenetic trees. Scoring matrices. Profiles. Sequence patterns. Structures and structure descriptions. Superposition and Dynamic programming. Geometric techniques. Clustering: Combining local similarities. Significance and assessment of structure comparisons. Multiple structure comparison. Protein structure classification. Structure prediction: Threading. Basics in mathematics, probability and algorithms. Introduction to molecular biology.
Practical Bioinformatics
Author: Janusz M. Bujnicki
Publisher: Springer
ISBN: 3540742689
Category : Science
Languages : en
Pages : 275
Book Description
This book presents applications of bioinformatics tools that experimental research scientists use in "daily practice." Its interdisciplinary approach combines computational and experimental methods to solve scientific problems. The book begins with reviews of computational methods for protein sequence-structure-function analysis, followed by methods that use experimental data obtained in the laboratory to improve functional predictions.
Publisher: Springer
ISBN: 3540742689
Category : Science
Languages : en
Pages : 275
Book Description
This book presents applications of bioinformatics tools that experimental research scientists use in "daily practice." Its interdisciplinary approach combines computational and experimental methods to solve scientific problems. The book begins with reviews of computational methods for protein sequence-structure-function analysis, followed by methods that use experimental data obtained in the laboratory to improve functional predictions.
Prediction of Protein Structures, Functions, and Interactions
Author: Janusz M. Bujnicki
Publisher: John Wiley & Sons
ISBN: 9780470741900
Category : Science
Languages : en
Pages : 302
Book Description
The growing flood of new experimental data generated by genome sequencing has provided an impetus for the development of automated methods for predicting the functions of proteins that have been deduced by sequence analysis and lack experimental characterization. Prediction of Protein Structures, Functions and Interactions presents a comprehensive overview of methods for prediction of protein structure or function, with the emphasis on their availability and possibilities for their combined use. Methods of modeling of individual proteins, prediction of their interactions, and docking of complexes are put in the context of predicting gene ontology (biological process, molecular function, and cellular component) and discussed in the light of their contribution to the emerging field of systems biology. Topics covered include: first steps of protein sequence analysis and structure prediction automated prediction of protein function from sequence template-based prediction of three-dimensional protein structures: fold-recognition and comparative modelling template-free prediction of three-dimensional protein structures quality assessment of protein models prediction of molecular interactions: from small ligands to large protein complexes macromolecular docking integrating prediction of structure, function, and interactions Prediction of Protein Structures, Functions and Interactions focuses on the methods that have performed well in CASPs, and which are constantly developed and maintained, and are freely available to academic researchers either as web servers or programs for local installation. It is an essential guide to the newest, best methods for prediction of protein structure and functions, for researchers and advanced students working in structural bioinformatics, protein chemistry, structural biology and drug discovery.
Publisher: John Wiley & Sons
ISBN: 9780470741900
Category : Science
Languages : en
Pages : 302
Book Description
The growing flood of new experimental data generated by genome sequencing has provided an impetus for the development of automated methods for predicting the functions of proteins that have been deduced by sequence analysis and lack experimental characterization. Prediction of Protein Structures, Functions and Interactions presents a comprehensive overview of methods for prediction of protein structure or function, with the emphasis on their availability and possibilities for their combined use. Methods of modeling of individual proteins, prediction of their interactions, and docking of complexes are put in the context of predicting gene ontology (biological process, molecular function, and cellular component) and discussed in the light of their contribution to the emerging field of systems biology. Topics covered include: first steps of protein sequence analysis and structure prediction automated prediction of protein function from sequence template-based prediction of three-dimensional protein structures: fold-recognition and comparative modelling template-free prediction of three-dimensional protein structures quality assessment of protein models prediction of molecular interactions: from small ligands to large protein complexes macromolecular docking integrating prediction of structure, function, and interactions Prediction of Protein Structures, Functions and Interactions focuses on the methods that have performed well in CASPs, and which are constantly developed and maintained, and are freely available to academic researchers either as web servers or programs for local installation. It is an essential guide to the newest, best methods for prediction of protein structure and functions, for researchers and advanced students working in structural bioinformatics, protein chemistry, structural biology and drug discovery.