Author: Bengt Nölting
Publisher: Springer Science & Business Media
ISBN: 3662053675
Category : Science
Languages : en
Pages : 257
Book Description
Incorporating dramatic recent advances, "Methods in Modern Biophysics" presents a fresh and timely introduction to modern biophysical methods. This innovative text surveys and explains the ten key biophysical methods, including those related to biophysical nanotechnology, scanning probe microscopy, X-ray crystallography, ion mobility spectrometry, mass spectrometry, and proteomics. Containing much information previously unavailable in tutorial form, "Methods in Modern Biophysics" employs worked examples and more than 260 illustrations to fully detail the techniques and their underlying mechanisms. The book was written for advanced undergraduate and graduate students, postdocs, researchers, lecturers and professors in biophysics, biochemistry, general biology and related fields.
Methods in Modern Biophysics
Author: Bengt Nölting
Publisher: Springer Science & Business Media
ISBN: 3662053675
Category : Science
Languages : en
Pages : 257
Book Description
Incorporating dramatic recent advances, "Methods in Modern Biophysics" presents a fresh and timely introduction to modern biophysical methods. This innovative text surveys and explains the ten key biophysical methods, including those related to biophysical nanotechnology, scanning probe microscopy, X-ray crystallography, ion mobility spectrometry, mass spectrometry, and proteomics. Containing much information previously unavailable in tutorial form, "Methods in Modern Biophysics" employs worked examples and more than 260 illustrations to fully detail the techniques and their underlying mechanisms. The book was written for advanced undergraduate and graduate students, postdocs, researchers, lecturers and professors in biophysics, biochemistry, general biology and related fields.
Publisher: Springer Science & Business Media
ISBN: 3662053675
Category : Science
Languages : en
Pages : 257
Book Description
Incorporating dramatic recent advances, "Methods in Modern Biophysics" presents a fresh and timely introduction to modern biophysical methods. This innovative text surveys and explains the ten key biophysical methods, including those related to biophysical nanotechnology, scanning probe microscopy, X-ray crystallography, ion mobility spectrometry, mass spectrometry, and proteomics. Containing much information previously unavailable in tutorial form, "Methods in Modern Biophysics" employs worked examples and more than 260 illustrations to fully detail the techniques and their underlying mechanisms. The book was written for advanced undergraduate and graduate students, postdocs, researchers, lecturers and professors in biophysics, biochemistry, general biology and related fields.
Methods in Modern Biophysics
Author: Bengt Nölting
Publisher: Springer Science & Business Media
ISBN: 3642030211
Category : Medical
Languages : en
Pages : 275
Book Description
Incorporating dramatic recent advances, "Methods in Modern Biophysics" presents a fresh and timely introduction to modern biophysical methods. This innovative text surveys and explains the ten key biophysical methods, including those related to biophysical nanotechnology, scanning probe microscopy, X-ray crystallography, ion mobility spectrometry, mass spectrometry, and proteomics. Containing much information previously unavailable in tutorial form, "Methods in Modern Biophysics" employs worked examples and more than 260 illustrations to fully detail the techniques and their underlying mechanisms. The book was written for advanced undergraduate and graduate students, postdocs, researchers, lecturers and professors in biophysics, biochemistry, general biology and related fields.
Publisher: Springer Science & Business Media
ISBN: 3642030211
Category : Medical
Languages : en
Pages : 275
Book Description
Incorporating dramatic recent advances, "Methods in Modern Biophysics" presents a fresh and timely introduction to modern biophysical methods. This innovative text surveys and explains the ten key biophysical methods, including those related to biophysical nanotechnology, scanning probe microscopy, X-ray crystallography, ion mobility spectrometry, mass spectrometry, and proteomics. Containing much information previously unavailable in tutorial form, "Methods in Modern Biophysics" employs worked examples and more than 260 illustrations to fully detail the techniques and their underlying mechanisms. The book was written for advanced undergraduate and graduate students, postdocs, researchers, lecturers and professors in biophysics, biochemistry, general biology and related fields.
Methods in Molecular Biophysics
Author: Nathan R. Zaccai
Publisher: Cambridge University Press
ISBN: 1108508804
Category : Science
Languages : en
Pages : 710
Book Description
Current techniques for studying biological macromolecules and their interactions are based on the application of physical methods, ranging from classical thermodynamics to more recently developed techniques for the detection and manipulation of single molecules. Reflecting the advances made in biophysics research over the past decade, and now including a new section on medical imaging, this new edition describes the physical methods used in modern biology. All key techniques are covered, including mass spectrometry, hydrodynamics, microscopy and imaging, diffraction and spectroscopy, electron microscopy, molecular dynamics simulations and nuclear magnetic resonance. Each method is explained in detail using examples of real-world applications. Short asides are provided throughout to ensure that explanations are accessible to life scientists, physicists and those with medical backgrounds. The book remains an unparalleled and comprehensive resource for graduate students of biophysics and medical physics in science and medical schools, as well as for research scientists looking for an introduction to techniques from across this interdisciplinary field.
Publisher: Cambridge University Press
ISBN: 1108508804
Category : Science
Languages : en
Pages : 710
Book Description
Current techniques for studying biological macromolecules and their interactions are based on the application of physical methods, ranging from classical thermodynamics to more recently developed techniques for the detection and manipulation of single molecules. Reflecting the advances made in biophysics research over the past decade, and now including a new section on medical imaging, this new edition describes the physical methods used in modern biology. All key techniques are covered, including mass spectrometry, hydrodynamics, microscopy and imaging, diffraction and spectroscopy, electron microscopy, molecular dynamics simulations and nuclear magnetic resonance. Each method is explained in detail using examples of real-world applications. Short asides are provided throughout to ensure that explanations are accessible to life scientists, physicists and those with medical backgrounds. The book remains an unparalleled and comprehensive resource for graduate students of biophysics and medical physics in science and medical schools, as well as for research scientists looking for an introduction to techniques from across this interdisciplinary field.
Fundamental Concepts in Biophysics
Author: Thomas Jue
Publisher: Springer Science & Business Media
ISBN: 1597453978
Category : Science
Languages : en
Pages : 262
Book Description
In the first volume, Fundamental Concepts in Biophysics, the authors lay down a foundation for biophysics study. Rajiv Singh opens the book by pointing to the central importance of “Mathematical Methods in Biophysics”. William Fink follows with a discussion on “Quantum Mechanics Basic to Biophysical Methods”. Together, these two chapters establish some of the principles of mathematical physics underlying many biophysics techniques. Because computer modeling forms an intricate part of biophysics research, Subhadip Raychaudhuri and colleagues introduce the use of computer modeling in “Computational Modeling of Receptor–Ligand Binding and Cellular Signaling Processes”. Yin Yeh and coworkers bring to the reader’s attention the physical basis underlying the common use of fluorescence spectroscopy in biomedical research in their chapter “Fluorescence Spectroscopy”. Electrophysiologists have also applied biophysics techniques in the study of membrane proteins, and Tsung-Yu Chen et al. explore stochastic processes of ion transport in their “Electrophysiological Measurements of Membrane Proteins”. Michael Saxton takes up a key biophysics question about particle distribution and behavior in systems with spatial or temporal inhomogeneity in his chapter “Single–Particle Tracking”. Finally, in “NMR Measurement of Biomolecule Diffusion”, Thomas Jue explains how magnetic resonance techniques can map biomolecule diffusion in the cell to a theory of respiratory control. This book thus launches the Handbook of Modern Biophysics series and sets up for the reader some of the fundamental concepts underpinning the biophysics issues to be presented in future volumes.
Publisher: Springer Science & Business Media
ISBN: 1597453978
Category : Science
Languages : en
Pages : 262
Book Description
In the first volume, Fundamental Concepts in Biophysics, the authors lay down a foundation for biophysics study. Rajiv Singh opens the book by pointing to the central importance of “Mathematical Methods in Biophysics”. William Fink follows with a discussion on “Quantum Mechanics Basic to Biophysical Methods”. Together, these two chapters establish some of the principles of mathematical physics underlying many biophysics techniques. Because computer modeling forms an intricate part of biophysics research, Subhadip Raychaudhuri and colleagues introduce the use of computer modeling in “Computational Modeling of Receptor–Ligand Binding and Cellular Signaling Processes”. Yin Yeh and coworkers bring to the reader’s attention the physical basis underlying the common use of fluorescence spectroscopy in biomedical research in their chapter “Fluorescence Spectroscopy”. Electrophysiologists have also applied biophysics techniques in the study of membrane proteins, and Tsung-Yu Chen et al. explore stochastic processes of ion transport in their “Electrophysiological Measurements of Membrane Proteins”. Michael Saxton takes up a key biophysics question about particle distribution and behavior in systems with spatial or temporal inhomogeneity in his chapter “Single–Particle Tracking”. Finally, in “NMR Measurement of Biomolecule Diffusion”, Thomas Jue explains how magnetic resonance techniques can map biomolecule diffusion in the cell to a theory of respiratory control. This book thus launches the Handbook of Modern Biophysics series and sets up for the reader some of the fundamental concepts underpinning the biophysics issues to be presented in future volumes.
Introduction to Experimental Biophysics
Author: Jay L. Nadeau
Publisher: CRC Press
ISBN: 1439897409
Category : Science
Languages : en
Pages : 658
Book Description
Increasing numbers of physicists, chemists, and mathematicians are moving into biology, reading literature across disciplines, and mastering novel biochemical concepts. To succeed in this transition, researchers must understand on a practical level what is experimentally feasible. The number of experimental techniques in biology is vast and often s
Publisher: CRC Press
ISBN: 1439897409
Category : Science
Languages : en
Pages : 658
Book Description
Increasing numbers of physicists, chemists, and mathematicians are moving into biology, reading literature across disciplines, and mastering novel biochemical concepts. To succeed in this transition, researchers must understand on a practical level what is experimentally feasible. The number of experimental techniques in biology is vast and often s
Introduction to Biophysical Methods for Protein and Nucleic Acid Research
Author: Jay A. Glasel
Publisher: Academic Press
ISBN: 0080534988
Category : Science
Languages : en
Pages : 528
Book Description
The first of its kind, Introduction to Biophysical Methods for Protein and Nucleic Acid Research serves as a text for the experienced researcher and student requiring an introduction to the field. Each chapter presents a description of the physical basis of the method, the type of information that may be obtained with the method, how data should be analyzed and interpreted and, where appropriate, practical tips about procedures and equipment.Key Features* Modern Use of Mass Spectroscopy* NMR Spectroscopy* Molecular Modeling and Graphics* Macintosh and DOS/Windows 3.x disks
Publisher: Academic Press
ISBN: 0080534988
Category : Science
Languages : en
Pages : 528
Book Description
The first of its kind, Introduction to Biophysical Methods for Protein and Nucleic Acid Research serves as a text for the experienced researcher and student requiring an introduction to the field. Each chapter presents a description of the physical basis of the method, the type of information that may be obtained with the method, how data should be analyzed and interpreted and, where appropriate, practical tips about procedures and equipment.Key Features* Modern Use of Mass Spectroscopy* NMR Spectroscopy* Molecular Modeling and Graphics* Macintosh and DOS/Windows 3.x disks
Biomedical Applications of Biophysics
Author: Thomas Jue
Publisher: Lulu.com
ISBN: 0359612288
Category :
Languages : en
Pages : 250
Book Description
Publisher: Lulu.com
ISBN: 0359612288
Category :
Languages : en
Pages : 250
Book Description
Modern Biophysical Chemistry
Author: Peter Jomo Walla
Publisher: John Wiley & Sons
ISBN: 3527683550
Category : Science
Languages : en
Pages : 358
Book Description
This updated and up-to-date version of the first edition continues with the really interesting stuff to spice up a standard biophysics and biophysical chemistry course. All relevant methods used in current cutting edge research including such recent developments as super-resolution microscopy and next-generation DNA sequencing techniques, as well as industrial applications, are explained. The text has been developed from a graduate course taught by the author for several years, and by presenting a mix of basic theory and real-life examples, he closes the gap between theory and experiment. The first part, on basic biophysical chemistry, surveys fundamental and spectroscopic techniques as well as biomolecular properties that represent the modern standard and are also the basis for the more sophisticated technologies discussed later in the book. The second part covers the latest bioanalytical techniques such as the mentioned super-resolution and next generation sequencing methods, confocal fluorescence microscopy, light sheet microscopy, two-photon microscopy and ultrafast spectroscopy, single molecule optical, electrical and force measurements, fluorescence correlation spectroscopy, optical tweezers, quantum dots and DNA origami techniques. Both the text and illustrations have been prepared in a clear and accessible style, with extended and updated exercises (and their solutions) accompanying each chapter. Readers with a basic understanding of biochemistry and/or biophysics will quickly gain an overview of cutting edge technology for the biophysical analysis of proteins, nucleic acids and other biomolecules and their interactions. Equally, any student contemplating a career in the chemical, pharmaceutical or bio-industry will greatly benefit from the technological knowledge presented. Questions of differing complexity testing the reader's understanding can be found at the end of each chapter with clearly described solutions available on the Wiley-VCH textbook homepage under: www.wiley-vch.de/textbooks
Publisher: John Wiley & Sons
ISBN: 3527683550
Category : Science
Languages : en
Pages : 358
Book Description
This updated and up-to-date version of the first edition continues with the really interesting stuff to spice up a standard biophysics and biophysical chemistry course. All relevant methods used in current cutting edge research including such recent developments as super-resolution microscopy and next-generation DNA sequencing techniques, as well as industrial applications, are explained. The text has been developed from a graduate course taught by the author for several years, and by presenting a mix of basic theory and real-life examples, he closes the gap between theory and experiment. The first part, on basic biophysical chemistry, surveys fundamental and spectroscopic techniques as well as biomolecular properties that represent the modern standard and are also the basis for the more sophisticated technologies discussed later in the book. The second part covers the latest bioanalytical techniques such as the mentioned super-resolution and next generation sequencing methods, confocal fluorescence microscopy, light sheet microscopy, two-photon microscopy and ultrafast spectroscopy, single molecule optical, electrical and force measurements, fluorescence correlation spectroscopy, optical tweezers, quantum dots and DNA origami techniques. Both the text and illustrations have been prepared in a clear and accessible style, with extended and updated exercises (and their solutions) accompanying each chapter. Readers with a basic understanding of biochemistry and/or biophysics will quickly gain an overview of cutting edge technology for the biophysical analysis of proteins, nucleic acids and other biomolecules and their interactions. Equally, any student contemplating a career in the chemical, pharmaceutical or bio-industry will greatly benefit from the technological knowledge presented. Questions of differing complexity testing the reader's understanding can be found at the end of each chapter with clearly described solutions available on the Wiley-VCH textbook homepage under: www.wiley-vch.de/textbooks
Biophysics for Beginners
Author: Helmut Schiessel
Publisher: CRC Press
ISBN: 9814241652
Category : Science
Languages : en
Pages : 420
Book Description
Biophysics is a new way of looking at living matter. It uses quantitative experimental and theoretical methods to open a new window for studying and understanding life processes. This textbook gives compact introductions to the basics of the field, including molecular cell biology and statistical physics. It then presents in-depth discussions of more advanced biophysics subjects, progressing to state-of-the-art experiments and their theoretical interpretations. The book is unique by offering a general introduction to biophysics, yet at the same time restricting itself to processes that occur inside the cell nucleus and that involve biopolymers (DNA, RNA, and proteins). This allows for an accessible read for beginners and a springboard for specialists who wish to continue their study in more detail.
Publisher: CRC Press
ISBN: 9814241652
Category : Science
Languages : en
Pages : 420
Book Description
Biophysics is a new way of looking at living matter. It uses quantitative experimental and theoretical methods to open a new window for studying and understanding life processes. This textbook gives compact introductions to the basics of the field, including molecular cell biology and statistical physics. It then presents in-depth discussions of more advanced biophysics subjects, progressing to state-of-the-art experiments and their theoretical interpretations. The book is unique by offering a general introduction to biophysics, yet at the same time restricting itself to processes that occur inside the cell nucleus and that involve biopolymers (DNA, RNA, and proteins). This allows for an accessible read for beginners and a springboard for specialists who wish to continue their study in more detail.
Biophysics
Author: William Bialek
Publisher: Princeton University Press
ISBN: 1400845572
Category : Science
Languages : en
Pages : 653
Book Description
A physicist's guide to the phenomena of life Interactions between the fields of physics and biology reach back over a century, and some of the most significant developments in biology—from the discovery of DNA's structure to imaging of the human brain—have involved collaboration across this disciplinary boundary. For a new generation of physicists, the phenomena of life pose exciting challenges to physics itself, and biophysics has emerged as an important subfield of this discipline. Here, William Bialek provides the first graduate-level introduction to biophysics aimed at physics students. Bialek begins by exploring how photon counting in vision offers important lessons about the opportunities for quantitative, physics-style experiments on diverse biological phenomena. He draws from these lessons three general physical principles—the importance of noise, the need to understand the extraordinary performance of living systems without appealing to finely tuned parameters, and the critical role of the representation and flow of information in the business of life. Bialek then applies these principles to a broad range of phenomena, including the control of gene expression, perception and memory, protein folding, the mechanics of the inner ear, the dynamics of biochemical reactions, and pattern formation in developing embryos. Featuring numerous problems and exercises throughout, Biophysics emphasizes the unifying power of abstract physical principles to motivate new and novel experiments on biological systems. Covers a range of biological phenomena from the physicist's perspective Features 200 problems Draws on statistical mechanics, quantum mechanics, and related mathematical concepts Includes an annotated bibliography and detailed appendixes
Publisher: Princeton University Press
ISBN: 1400845572
Category : Science
Languages : en
Pages : 653
Book Description
A physicist's guide to the phenomena of life Interactions between the fields of physics and biology reach back over a century, and some of the most significant developments in biology—from the discovery of DNA's structure to imaging of the human brain—have involved collaboration across this disciplinary boundary. For a new generation of physicists, the phenomena of life pose exciting challenges to physics itself, and biophysics has emerged as an important subfield of this discipline. Here, William Bialek provides the first graduate-level introduction to biophysics aimed at physics students. Bialek begins by exploring how photon counting in vision offers important lessons about the opportunities for quantitative, physics-style experiments on diverse biological phenomena. He draws from these lessons three general physical principles—the importance of noise, the need to understand the extraordinary performance of living systems without appealing to finely tuned parameters, and the critical role of the representation and flow of information in the business of life. Bialek then applies these principles to a broad range of phenomena, including the control of gene expression, perception and memory, protein folding, the mechanics of the inner ear, the dynamics of biochemical reactions, and pattern formation in developing embryos. Featuring numerous problems and exercises throughout, Biophysics emphasizes the unifying power of abstract physical principles to motivate new and novel experiments on biological systems. Covers a range of biological phenomena from the physicist's perspective Features 200 problems Draws on statistical mechanics, quantum mechanics, and related mathematical concepts Includes an annotated bibliography and detailed appendixes