Methodologies for Knowledge Discovery and Data Mining

Methodologies for Knowledge Discovery and Data Mining PDF Author: Ning Zhong
Publisher: Springer
ISBN: 3540489126
Category : Computers
Languages : en
Pages : 566

Get Book Here

Book Description
This book constitutes the refereed proceedings of the Third Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD '99, held in Beijing, China, in April 1999. The 29 revised full papers presented together with 37 short papers were carefully selected from a total of 158 submissions. The book is divided into sections on emerging KDD technology; association rules; feature selection and generation; mining in semi-unstructured data; interestingness, surprisingness, and exceptions; rough sets, fuzzy logic, and neural networks; induction, classification, and clustering; visualization; causal models and graph-based methods; agent-based and distributed data mining; and advanced topics and new methodologies.

Data Mining Methods for Knowledge Discovery

Data Mining Methods for Knowledge Discovery PDF Author: Krzysztof J. Cios
Publisher: Springer Science & Business Media
ISBN: 1461555892
Category : Computers
Languages : en
Pages : 508

Get Book Here

Book Description
Data Mining Methods for Knowledge Discovery provides an introduction to the data mining methods that are frequently used in the process of knowledge discovery. This book first elaborates on the fundamentals of each of the data mining methods: rough sets, Bayesian analysis, fuzzy sets, genetic algorithms, machine learning, neural networks, and preprocessing techniques. The book then goes on to thoroughly discuss these methods in the setting of the overall process of knowledge discovery. Numerous illustrative examples and experimental findings are also included. Each chapter comes with an extensive bibliography. Data Mining Methods for Knowledge Discovery is intended for senior undergraduate and graduate students, as well as a broad audience of professionals in computer and information sciences, medical informatics, and business information systems.

Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining PDF Author: O. Maimon
Publisher: Springer Science & Business Media
ISBN: 9780792366478
Category : Computers
Languages : en
Pages : 192

Get Book Here

Book Description
This book presents a specific and unified approach to Knowledge Discovery and Data Mining, termed IFN for Information Fuzzy Network methodology. Data Mining (DM) is the science of modelling and generalizing common patterns from large sets of multi-type data. DM is a part of KDD, which is the overall process for Knowledge Discovery in Databases. The accessibility and abundance of information today makes this a topic of particular importance and need. The book has three main parts complemented by appendices as well as software and project data that are accessible from the book's web site (http://www.eng.tau.ac.iV-maimonlifn-kdg£). Part I (Chapters 1-4) starts with the topic of KDD and DM in general and makes reference to other works in the field, especially those related to the information theoretic approach. The remainder of the book presents our work, starting with the IFN theory and algorithms. Part II (Chapters 5-6) discusses the methodology of application and includes case studies. Then in Part III (Chapters 7-9) a comparative study is presented, concluding with some advanced methods and open problems. The IFN, being a generic methodology, applies to a variety of fields, such as manufacturing, finance, health care, medicine, insurance, and human resources. The appendices expand on the relevant theoretical background and present descriptions of sample projects (including detailed results).

Data Mining and Knowledge Discovery Handbook

Data Mining and Knowledge Discovery Handbook PDF Author: Oded Maimon
Publisher: Springer Science & Business Media
ISBN: 038725465X
Category : Computers
Languages : en
Pages : 1378

Get Book Here

Book Description
Data Mining and Knowledge Discovery Handbook organizes all major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This book first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security. Data Mining and Knowledge Discovery Handbook is designed for research scientists and graduate-level students in computer science and engineering. This book is also suitable for professionals in fields such as computing applications, information systems management, and strategic research management.

Data Mining

Data Mining PDF Author: Krzysztof J. Cios
Publisher: Springer Science & Business Media
ISBN: 0387367950
Category : Computers
Languages : en
Pages : 601

Get Book Here

Book Description
This comprehensive textbook on data mining details the unique steps of the knowledge discovery process that prescribes the sequence in which data mining projects should be performed, from problem and data understanding through data preprocessing to deployment of the results. This knowledge discovery approach is what distinguishes Data Mining from other texts in this area. The book provides a suite of exercises and includes links to instructional presentations. Furthermore, it contains appendices of relevant mathematical material.

Advanced Techniques in Knowledge Discovery and Data Mining

Advanced Techniques in Knowledge Discovery and Data Mining PDF Author: Nikhil Pal
Publisher: Springer
ISBN: 9781852338671
Category : Computers
Languages : en
Pages : 256

Get Book Here

Book Description
Clear and concise explanations to understand the learning paradigms. Chapters written by leading world experts.

Data Mining and Knowledge Discovery via Logic-Based Methods

Data Mining and Knowledge Discovery via Logic-Based Methods PDF Author: Evangelos Triantaphyllou
Publisher: Springer Science & Business Media
ISBN: 144191630X
Category : Computers
Languages : en
Pages : 371

Get Book Here

Book Description
The importance of having ef cient and effective methods for data mining and kn- ledge discovery (DM&KD), to which the present book is devoted, grows every day and numerous such methods have been developed in recent decades. There exists a great variety of different settings for the main problem studied by data mining and knowledge discovery, and it seems that a very popular one is formulated in terms of binary attributes. In this setting, states of nature of the application area under consideration are described by Boolean vectors de ned on some attributes. That is, by data points de ned in the Boolean space of the attributes. It is postulated that there exists a partition of this space into two classes, which should be inferred as patterns on the attributes when only several data points are known, the so-called positive and negative training examples. The main problem in DM&KD is de ned as nding rules for recognizing (cl- sifying) new data points of unknown class, i. e. , deciding which of them are positive and which are negative. In other words, to infer the binary value of one more attribute, called the goal or class attribute. To solve this problem, some methods have been suggested which construct a Boolean function separating the two given sets of positive and negative training data points.

Decomposition Methodology for Knowledge Discovery and Data Mining

Decomposition Methodology for Knowledge Discovery and Data Mining PDF Author: Oded Maimon
Publisher: World Scientific Publishing Company
ISBN: 9813106441
Category : Computers
Languages : en
Pages : 344

Get Book Here

Book Description
Data Mining is the science and technology of exploring data in order to discover previously unknown patterns. It is a part of the overall process of Knowledge Discovery in Databases (KDD). The accessibility and abundance of information today makes data mining a matter of considerable importance and necessity. This book provides an introduction to the field with an emphasis on advanced decomposition methods in general data mining tasks and for classification tasks in particular. The book presents a complete methodology for decomposing classification problems into smaller and more manageable sub-problems that are solvable by using existing tools. The various elements are then joined together to solve the initial problem. The benefits of decomposition methodology in data mining include: increased performance (classification accuracy); conceptual simplification of the problem; enhanced feasibility for huge databases; clearer and more comprehensible results; reduced runtime by solving smaller problems and by using parallel/distributed computation; and the opportunity of using different techniques for individual sub-problems.

Advances in Knowledge Discovery and Data Mining

Advances in Knowledge Discovery and Data Mining PDF Author: Usama M. Fayyad
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 638

Get Book Here

Book Description
Eight sections of this book span fundamental issues of knowledge discovery, classification and clustering, trend and deviation analysis, dependency derivation, integrated discovery systems, augumented database systems and application case studies. The appendices provide a list of terms used in the literature of the field of data mining and knowledge discovery in databases, and a list of online resources for the KDD researcher.

Geographic Data Mining and Knowledge Discovery

Geographic Data Mining and Knowledge Discovery PDF Author: Harvey J. Miller
Publisher: CRC Press
ISBN:
Category : Business & Economics
Languages : en
Pages : 408

Get Book Here

Book Description
Advances in automated data collection are creating massive databases and a whole new field, Knowledge Discovery Databases (KDD), has emerged to develop new methods of managing and exploiting them. Geographic Data Mining and Knowledge Discovery is the interrogation of large databases using efficient computational methods. The unique challenges brought about by the storing of massive geographical databases - from high resolution satellite-based systems to data from intelligent transportation systems, for example - has led to the field of Geographical Knowledge Discovery (GKD). Geographic or spatial data mining is the exploration of these geographical information databases. Developed out of contributions to the highly-respected Varenius Project in 1999, this collection will be the definitive volume focusing on GKD and addresses the special challenges to be found in knowledge discovery and data mining from geographic databases.

Methodologies for Knowledge Discovery and Data Mining

Methodologies for Knowledge Discovery and Data Mining PDF Author: Ning Zhong
Publisher: Springer
ISBN: 3540489126
Category : Computers
Languages : en
Pages : 566

Get Book Here

Book Description
This book constitutes the refereed proceedings of the Third Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD '99, held in Beijing, China, in April 1999. The 29 revised full papers presented together with 37 short papers were carefully selected from a total of 158 submissions. The book is divided into sections on emerging KDD technology; association rules; feature selection and generation; mining in semi-unstructured data; interestingness, surprisingness, and exceptions; rough sets, fuzzy logic, and neural networks; induction, classification, and clustering; visualization; causal models and graph-based methods; agent-based and distributed data mining; and advanced topics and new methodologies.