Author: Andrzej Granas
Publisher:
ISBN:
Category : Algebraic topology
Languages : en
Pages : 244
Book Description
Méthodes Topologiques en Analyse Non Linéaire
Author: Andrzej Granas
Publisher:
ISBN:
Category : Algebraic topology
Languages : en
Pages : 244
Book Description
Publisher:
ISBN:
Category : Algebraic topology
Languages : en
Pages : 244
Book Description
Méthodes topologiques en analyse convexe
Author: Andrzej Granas
Publisher: Presses de l'Université de Montréal
ISBN:
Category : Algebraic topology
Languages : fr
Pages : 154
Book Description
Publisher: Presses de l'Université de Montréal
ISBN:
Category : Algebraic topology
Languages : fr
Pages : 154
Book Description
Fixed Point Theory
Author: Andrzej Granas
Publisher: Springer Science & Business Media
ISBN: 038721593X
Category : Mathematics
Languages : en
Pages : 706
Book Description
The theory of Fixed Points is one of the most powerful tools of modern mathematics. This book contains a clear, detailed and well-organized presentation of the major results, together with an entertaining set of historical notes and an extensive bibliography describing further developments and applications. From the reviews: "I recommend this excellent volume on fixed point theory to anyone interested in this core subject of nonlinear analysis." --MATHEMATICAL REVIEWS
Publisher: Springer Science & Business Media
ISBN: 038721593X
Category : Mathematics
Languages : en
Pages : 706
Book Description
The theory of Fixed Points is one of the most powerful tools of modern mathematics. This book contains a clear, detailed and well-organized presentation of the major results, together with an entertaining set of historical notes and an extensive bibliography describing further developments and applications. From the reviews: "I recommend this excellent volume on fixed point theory to anyone interested in this core subject of nonlinear analysis." --MATHEMATICAL REVIEWS
Topological Methods in Nonlinear Analysis
Author:
Publisher:
ISBN:
Category : Nonlinear functional analysis
Languages : en
Pages : 414
Book Description
Publisher:
ISBN:
Category : Nonlinear functional analysis
Languages : en
Pages : 414
Book Description
Variational and Hemivariational Inequalities Theory, Methods and Applications
Author: D. Goeleven
Publisher: Springer Science & Business Media
ISBN: 1441986103
Category : Mathematics
Languages : en
Pages : 417
Book Description
This book includes a self-contained theory of inequality problems and their applications to unilateral mechanics. Fundamental theoretical results and related methods of analysis are discussed on various examples and applications in mechanics. The work can be seen as a book of applied nonlinear analysis entirely devoted to the study of inequality problems, i.e. variational inequalities and hemivariational inequalities in mathematical models and their corresponding applications to unilateral mechanics. It contains a systematic investigation of the interplay between theoretical results and concrete problems in mechanics. It is the first textbook including a comprehensive and systematic study of both elliptic, parabolic and hyperbolic inequality models, dynamical unilateral systems and unilateral eigenvalues problems. The book is self-contained and it offers, for the first time, the possibility to learn about inequality models and to acquire the essence of the theory in a relatively short time.
Publisher: Springer Science & Business Media
ISBN: 1441986103
Category : Mathematics
Languages : en
Pages : 417
Book Description
This book includes a self-contained theory of inequality problems and their applications to unilateral mechanics. Fundamental theoretical results and related methods of analysis are discussed on various examples and applications in mechanics. The work can be seen as a book of applied nonlinear analysis entirely devoted to the study of inequality problems, i.e. variational inequalities and hemivariational inequalities in mathematical models and their corresponding applications to unilateral mechanics. It contains a systematic investigation of the interplay between theoretical results and concrete problems in mechanics. It is the first textbook including a comprehensive and systematic study of both elliptic, parabolic and hyperbolic inequality models, dynamical unilateral systems and unilateral eigenvalues problems. The book is self-contained and it offers, for the first time, the possibility to learn about inequality models and to acquire the essence of the theory in a relatively short time.
Systèmes Dynamiques Non Linéaires
Author: Pavel Winternitz
Publisher: Les Presses de L'Universite de Montreal
ISBN:
Category : Differentiable dynamical systems
Languages : en
Pages : 356
Book Description
Publisher: Les Presses de L'Universite de Montreal
ISBN:
Category : Differentiable dynamical systems
Languages : en
Pages : 356
Book Description
Encyclopedia of General Topology
Author: K.P. Hart
Publisher: Elsevier
ISBN: 0080530869
Category : Mathematics
Languages : en
Pages : 537
Book Description
This book is designed for the reader who wants to get a general view of the terminology of General Topology with minimal time and effort. The reader, whom we assume to have only a rudimentary knowledge of set theory, algebra and analysis, will be able to find what they want if they will properly use the index. However, this book contains very few proofs and the reader who wants to study more systematically will find sufficiently many references in the book.Key features:• More terms from General Topology than any other book ever published• Short and informative articles• Authors include the majority of top researchers in the field• Extensive indexing of terms
Publisher: Elsevier
ISBN: 0080530869
Category : Mathematics
Languages : en
Pages : 537
Book Description
This book is designed for the reader who wants to get a general view of the terminology of General Topology with minimal time and effort. The reader, whom we assume to have only a rudimentary knowledge of set theory, algebra and analysis, will be able to find what they want if they will properly use the index. However, this book contains very few proofs and the reader who wants to study more systematically will find sufficiently many references in the book.Key features:• More terms from General Topology than any other book ever published• Short and informative articles• Authors include the majority of top researchers in the field• Extensive indexing of terms
Critical Point Theory and Hamiltonian Systems
Author: Jean Mawhin
Publisher: Springer Science & Business Media
ISBN: 1475720610
Category : Science
Languages : en
Pages : 292
Book Description
FACHGEB The last decade has seen a tremendous development in critical point theory in infinite dimensional spaces and its application to nonlinear boundary value problems. In particular, striking results were obtained in the classical problem of periodic solutions of Hamiltonian systems. This book provides a systematic presentation of the most basic tools of critical point theory: minimization, convex functions and Fenchel transform, dual least action principle, Ekeland variational principle, minimax methods, Lusternik- Schirelmann theory for Z2 and S1 symmetries, Morse theory for possibly degenerate critical points and non-degenerate critical manifolds. Each technique is illustrated by applications to the discussion of the existence, multiplicity, and bifurcation of the periodic solutions of Hamiltonian systems. Among the treated questions are the periodic solutions with fixed period or fixed energy of autonomous systems, the existence of subharmonics in the non-autonomous case, the asymptotically linear Hamiltonian systems, free and forced superlinear problems. Application of those results to the equations of mechanical pendulum, to Josephson systems of solid state physics and to questions from celestial mechanics are given. The aim of the book is to introduce a reader familiar to more classical techniques of ordinary differential equations to the powerful approach of modern critical point theory. The style of the exposition has been adapted to this goal. The new topological tools are introduced in a progressive but detailed way and immediately applied to differential equation problems. The abstract tools can also be applied to partial differential equations and the reader will also find the basic references in this direction in the bibliography of more than 500 items which concludes the book. ERSCHEIN
Publisher: Springer Science & Business Media
ISBN: 1475720610
Category : Science
Languages : en
Pages : 292
Book Description
FACHGEB The last decade has seen a tremendous development in critical point theory in infinite dimensional spaces and its application to nonlinear boundary value problems. In particular, striking results were obtained in the classical problem of periodic solutions of Hamiltonian systems. This book provides a systematic presentation of the most basic tools of critical point theory: minimization, convex functions and Fenchel transform, dual least action principle, Ekeland variational principle, minimax methods, Lusternik- Schirelmann theory for Z2 and S1 symmetries, Morse theory for possibly degenerate critical points and non-degenerate critical manifolds. Each technique is illustrated by applications to the discussion of the existence, multiplicity, and bifurcation of the periodic solutions of Hamiltonian systems. Among the treated questions are the periodic solutions with fixed period or fixed energy of autonomous systems, the existence of subharmonics in the non-autonomous case, the asymptotically linear Hamiltonian systems, free and forced superlinear problems. Application of those results to the equations of mechanical pendulum, to Josephson systems of solid state physics and to questions from celestial mechanics are given. The aim of the book is to introduce a reader familiar to more classical techniques of ordinary differential equations to the powerful approach of modern critical point theory. The style of the exposition has been adapted to this goal. The new topological tools are introduced in a progressive but detailed way and immediately applied to differential equation problems. The abstract tools can also be applied to partial differential equations and the reader will also find the basic references in this direction in the bibliography of more than 500 items which concludes the book. ERSCHEIN
French Mathematical Seminars
Author: Nancy D. Anderson
Publisher: American Mathematical Soc.
ISBN: 9780821801291
Category : Mathematics
Languages : en
Pages : 198
Book Description
Intended for mathematics librarians, the list allows librarians to ascertain if a seminaire has been published, which library has it, and the forms of entry under which it has been cataloged.
Publisher: American Mathematical Soc.
ISBN: 9780821801291
Category : Mathematics
Languages : en
Pages : 198
Book Description
Intended for mathematics librarians, the list allows librarians to ascertain if a seminaire has been published, which library has it, and the forms of entry under which it has been cataloged.
Computational Homology
Author: Tomasz Kaczynski
Publisher: Springer Science & Business Media
ISBN: 0387215972
Category : Mathematics
Languages : en
Pages : 488
Book Description
Homology is a powerful tool used by mathematicians to study the properties of spaces and maps that are insensitive to small perturbations. This book uses a computer to develop a combinatorial computational approach to the subject. The core of the book deals with homology theory and its computation. Following this is a section containing extensions to further developments in algebraic topology, applications to computational dynamics, and applications to image processing. Included are exercises and software that can be used to compute homology groups and maps. The book will appeal to researchers and graduate students in mathematics, computer science, engineering, and nonlinear dynamics.
Publisher: Springer Science & Business Media
ISBN: 0387215972
Category : Mathematics
Languages : en
Pages : 488
Book Description
Homology is a powerful tool used by mathematicians to study the properties of spaces and maps that are insensitive to small perturbations. This book uses a computer to develop a combinatorial computational approach to the subject. The core of the book deals with homology theory and its computation. Following this is a section containing extensions to further developments in algebraic topology, applications to computational dynamics, and applications to image processing. Included are exercises and software that can be used to compute homology groups and maps. The book will appeal to researchers and graduate students in mathematics, computer science, engineering, and nonlinear dynamics.