Meta-Learning in Computational Intelligence

Meta-Learning in Computational Intelligence PDF Author: Norbert Jankowski
Publisher: Springer
ISBN: 3642209807
Category : Technology & Engineering
Languages : en
Pages : 362

Get Book Here

Book Description
Computational Intelligence (CI) community has developed hundreds of algorithms for intelligent data analysis, but still many hard problems in computer vision, signal processing or text and multimedia understanding, problems that require deep learning techniques, are open. Modern data mining packages contain numerous modules for data acquisition, pre-processing, feature selection and construction, instance selection, classification, association and approximation methods, optimization techniques, pattern discovery, clusterization, visualization and post-processing. A large data mining package allows for billions of ways in which these modules can be combined. No human expert can claim to explore and understand all possibilities in the knowledge discovery process. This is where algorithms that learn how to learnl come to rescue. Operating in the space of all available data transformations and optimization techniques these algorithms use meta-knowledge about learning processes automatically extracted from experience of solving diverse problems. Inferences about transformations useful in different contexts help to construct learning algorithms that can uncover various aspects of knowledge hidden in the data. Meta-learning shifts the focus of the whole CI field from individual learning algorithms to the higher level of learning how to learn. This book defines and reveals new theoretical and practical trends in meta-learning, inspiring the readers to further research in this exciting field.

Metalearning

Metalearning PDF Author: Pavel Brazdil
Publisher: Springer Science & Business Media
ISBN: 3540732624
Category : Computers
Languages : en
Pages : 182

Get Book Here

Book Description
Metalearning is the study of principled methods that exploit metaknowledge to obtain efficient models and solutions by adapting machine learning and data mining processes. While the variety of machine learning and data mining techniques now available can, in principle, provide good model solutions, a methodology is still needed to guide the search for the most appropriate model in an efficient way. Metalearning provides one such methodology that allows systems to become more effective through experience. This book discusses several approaches to obtaining knowledge concerning the performance of machine learning and data mining algorithms. It shows how this knowledge can be reused to select, combine, compose and adapt both algorithms and models to yield faster, more effective solutions to data mining problems. It can thus help developers improve their algorithms and also develop learning systems that can improve themselves. The book will be of interest to researchers and graduate students in the areas of machine learning, data mining and artificial intelligence.

Automated Machine Learning

Automated Machine Learning PDF Author: Frank Hutter
Publisher: Springer
ISBN: 3030053180
Category : Computers
Languages : en
Pages : 223

Get Book Here

Book Description
This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.

Artificial Intelligence Paradigms for Smart Cyber-Physical Systems

Artificial Intelligence Paradigms for Smart Cyber-Physical Systems PDF Author: Luhach, Ashish Kumar
Publisher: IGI Global
ISBN: 1799851028
Category : Computers
Languages : en
Pages : 392

Get Book Here

Book Description
Cyber-physical systems (CPS) have emerged as a unifying name for systems where cyber parts (i.e., the computing and communication parts) and physical parts are tightly integrated, both in design and during operation. Such systems use computations and communication deeply embedded in and interacting with human physical processes as well as augmenting existing and adding new capabilities. As such, CPS is an integration of computation, networking, and physical processes. Embedded computers and networks monitor and control the physical processes, with feedback loops where physical processes affect computations and vice versa. The economic and societal potential of such systems is vastly greater than what has been realized, and major investments are being made worldwide to develop the technology. Artificial Intelligence Paradigms for Smart Cyber-Physical Systems focuses on the recent advances in Artificial intelligence-based approaches towards affecting secure cyber-physical systems. This book presents investigations on state-of-the-art research issues, applications, and achievements in the field of computational intelligence paradigms for CPS. Covering topics that include autonomous systems, access control, machine learning, and intrusion detection and prevention systems, this book is ideally designed for engineers, industry professionals, practitioners, scientists, managers, students, academicians, and researchers seeking current research on artificial intelligence and cyber-physical systems.

Hands-On Meta Learning with Python

Hands-On Meta Learning with Python PDF Author: Sudharsan Ravichandiran
Publisher: Packt Publishing Ltd
ISBN: 1789537029
Category : Computers
Languages : en
Pages : 218

Get Book Here

Book Description
Explore a diverse set of meta-learning algorithms and techniques to enable human-like cognition for your machine learning models using various Python frameworks Key FeaturesUnderstand the foundations of meta learning algorithmsExplore practical examples to explore various one-shot learning algorithms with its applications in TensorFlowMaster state of the art meta learning algorithms like MAML, reptile, meta SGDBook Description Meta learning is an exciting research trend in machine learning, which enables a model to understand the learning process. Unlike other ML paradigms, with meta learning you can learn from small datasets faster. Hands-On Meta Learning with Python starts by explaining the fundamentals of meta learning and helps you understand the concept of learning to learn. You will delve into various one-shot learning algorithms, like siamese, prototypical, relation and memory-augmented networks by implementing them in TensorFlow and Keras. As you make your way through the book, you will dive into state-of-the-art meta learning algorithms such as MAML, Reptile, and CAML. You will then explore how to learn quickly with Meta-SGD and discover how you can perform unsupervised learning using meta learning with CACTUs. In the concluding chapters, you will work through recent trends in meta learning such as adversarial meta learning, task agnostic meta learning, and meta imitation learning. By the end of this book, you will be familiar with state-of-the-art meta learning algorithms and able to enable human-like cognition for your machine learning models. What you will learnUnderstand the basics of meta learning methods, algorithms, and typesBuild voice and face recognition models using a siamese networkLearn the prototypical network along with its variantsBuild relation networks and matching networks from scratchImplement MAML and Reptile algorithms from scratch in PythonWork through imitation learning and adversarial meta learningExplore task agnostic meta learning and deep meta learningWho this book is for Hands-On Meta Learning with Python is for machine learning enthusiasts, AI researchers, and data scientists who want to explore meta learning as an advanced approach for training machine learning models. Working knowledge of machine learning concepts and Python programming is necessary.

Inductive Logic Programming

Inductive Logic Programming PDF Author: Sašo Džeroski
Publisher: Springer Science & Business Media
ISBN: 3540661093
Category : Computers
Languages : en
Pages : 308

Get Book Here

Book Description
Wewishtothank AlfredHofmannandAnnaKramerofSpringer-Verlagfortheircooperationin publishing these proceedings. Finally, we gratefully acknowledge the nancial supportprovidedbythesponsorsofILP-99.

The Principles of Deep Learning Theory

The Principles of Deep Learning Theory PDF Author: Daniel A. Roberts
Publisher: Cambridge University Press
ISBN: 1316519333
Category : Computers
Languages : en
Pages : 473

Get Book Here

Book Description
This volume develops an effective theory approach to understanding deep neural networks of practical relevance.

Metalearning

Metalearning PDF Author: Pavel Brazdil
Publisher: Springer Science & Business Media
ISBN: 3540732632
Category : Computers
Languages : en
Pages : 182

Get Book Here

Book Description
Metalearning is the study of principled methods that exploit metaknowledge to obtain efficient models and solutions by adapting machine learning and data mining processes. While the variety of machine learning and data mining techniques now available can, in principle, provide good model solutions, a methodology is still needed to guide the search for the most appropriate model in an efficient way. Metalearning provides one such methodology that allows systems to become more effective through experience. This book discusses several approaches to obtaining knowledge concerning the performance of machine learning and data mining algorithms. It shows how this knowledge can be reused to select, combine, compose and adapt both algorithms and models to yield faster, more effective solutions to data mining problems. It can thus help developers improve their algorithms and also develop learning systems that can improve themselves. The book will be of interest to researchers and graduate students in the areas of machine learning, data mining and artificial intelligence.

Learning to Learn

Learning to Learn PDF Author: Sebastian Thrun
Publisher: Springer Science & Business Media
ISBN: 1461555299
Category : Computers
Languages : en
Pages : 346

Get Book Here

Book Description
Over the past three decades or so, research on machine learning and data mining has led to a wide variety of algorithms that learn general functions from experience. As machine learning is maturing, it has begun to make the successful transition from academic research to various practical applications. Generic techniques such as decision trees and artificial neural networks, for example, are now being used in various commercial and industrial applications. Learning to Learn is an exciting new research direction within machine learning. Similar to traditional machine-learning algorithms, the methods described in Learning to Learn induce general functions from experience. However, the book investigates algorithms that can change the way they generalize, i.e., practice the task of learning itself, and improve on it. To illustrate the utility of learning to learn, it is worthwhile comparing machine learning with human learning. Humans encounter a continual stream of learning tasks. They do not just learn concepts or motor skills, they also learn bias, i.e., they learn how to generalize. As a result, humans are often able to generalize correctly from extremely few examples - often just a single example suffices to teach us a new thing. A deeper understanding of computer programs that improve their ability to learn can have a large practical impact on the field of machine learning and beyond. In recent years, the field has made significant progress towards a theory of learning to learn along with practical new algorithms, some of which led to impressive results in real-world applications. Learning to Learn provides a survey of some of the most exciting new research approaches, written by leading researchers in the field. Its objective is to investigate the utility and feasibility of computer programs that can learn how to learn, both from a practical and a theoretical point of view.

Metareasoning

Metareasoning PDF Author: Michael T. Cox
Publisher: MIT Press
ISBN: 0262014807
Category : Computers
Languages : en
Pages : 349

Get Book Here

Book Description
Experts report on the latest artificial intelligence research concerning reasoning about reasoning itself.