Author: Sharma, Ashok
Publisher: IGI Global
ISBN: 1668476614
Category : Computers
Languages : en
Pages : 271
Book Description
Meta-learning, or learning to learn, has been gaining popularity in recent years to adapt to new tasks systematically and efficiently in machine learning. In the book, Meta-Learning Frameworks for Imaging Applications, experts from the fields of machine learning and imaging come together to explore the current state of meta-learning and its application to medical imaging and health informatics. The book presents an overview of the meta-learning framework, including common versions such as model-agnostic learning, memory augmentation, prototype networks, and learning to optimize. It also discusses how meta-learning can be applied to address fundamental limitations of deep neural networks, such as high data demand, computationally expensive training, and limited ability for task transfer. One critical topic in imaging is image segmentation, and the book explores how a meta-learning-based framework can help identify the best image segmentation algorithm, which would be particularly beneficial in the healthcare domain. This book is relevant to healthcare institutes, e-commerce companies, and educational institutions, as well as professionals and practitioners in the intelligent system, computational data science, network applications, and biomedical applications fields. It is also useful for domain developers and project managers from diagnostic and pharmacy companies involved in the development of medical expert systems. Additionally, graduate and master students in intelligent systems, big data management, computational intelligent approaches, computer vision, and biomedical science can use this book for their final projects and specific courses.
Meta-Learning Frameworks for Imaging Applications
Author: Sharma, Ashok
Publisher: IGI Global
ISBN: 1668476614
Category : Computers
Languages : en
Pages : 271
Book Description
Meta-learning, or learning to learn, has been gaining popularity in recent years to adapt to new tasks systematically and efficiently in machine learning. In the book, Meta-Learning Frameworks for Imaging Applications, experts from the fields of machine learning and imaging come together to explore the current state of meta-learning and its application to medical imaging and health informatics. The book presents an overview of the meta-learning framework, including common versions such as model-agnostic learning, memory augmentation, prototype networks, and learning to optimize. It also discusses how meta-learning can be applied to address fundamental limitations of deep neural networks, such as high data demand, computationally expensive training, and limited ability for task transfer. One critical topic in imaging is image segmentation, and the book explores how a meta-learning-based framework can help identify the best image segmentation algorithm, which would be particularly beneficial in the healthcare domain. This book is relevant to healthcare institutes, e-commerce companies, and educational institutions, as well as professionals and practitioners in the intelligent system, computational data science, network applications, and biomedical applications fields. It is also useful for domain developers and project managers from diagnostic and pharmacy companies involved in the development of medical expert systems. Additionally, graduate and master students in intelligent systems, big data management, computational intelligent approaches, computer vision, and biomedical science can use this book for their final projects and specific courses.
Publisher: IGI Global
ISBN: 1668476614
Category : Computers
Languages : en
Pages : 271
Book Description
Meta-learning, or learning to learn, has been gaining popularity in recent years to adapt to new tasks systematically and efficiently in machine learning. In the book, Meta-Learning Frameworks for Imaging Applications, experts from the fields of machine learning and imaging come together to explore the current state of meta-learning and its application to medical imaging and health informatics. The book presents an overview of the meta-learning framework, including common versions such as model-agnostic learning, memory augmentation, prototype networks, and learning to optimize. It also discusses how meta-learning can be applied to address fundamental limitations of deep neural networks, such as high data demand, computationally expensive training, and limited ability for task transfer. One critical topic in imaging is image segmentation, and the book explores how a meta-learning-based framework can help identify the best image segmentation algorithm, which would be particularly beneficial in the healthcare domain. This book is relevant to healthcare institutes, e-commerce companies, and educational institutions, as well as professionals and practitioners in the intelligent system, computational data science, network applications, and biomedical applications fields. It is also useful for domain developers and project managers from diagnostic and pharmacy companies involved in the development of medical expert systems. Additionally, graduate and master students in intelligent systems, big data management, computational intelligent approaches, computer vision, and biomedical science can use this book for their final projects and specific courses.
Meta Learning With Medical Imaging and Health Informatics Applications
Author: Hien Van Nguyen
Publisher: Academic Press
ISBN: 0323998526
Category : Computers
Languages : en
Pages : 430
Book Description
Meta-Learning, or learning to learn, has become increasingly popular in recent years. Instead of building AI systems from scratch for each machine learning task, Meta-Learning constructs computational mechanisms to systematically and efficiently adapt to new tasks. The meta-learning paradigm has great potential to address deep neural networks' fundamental challenges such as intensive data requirement, computationally expensive training, and limited capacity for transfer among tasks.This book provides a concise summary of Meta-Learning theories and their diverse applications in medical imaging and health informatics. It covers the unifying theory of meta-learning and its popular variants such as model-agnostic learning, memory augmentation, prototypical networks, and learning to optimize. The book brings together thought leaders from both machine learning and health informatics fields to discuss the current state of Meta-Learning, its relevance to medical imaging and health informatics, and future directions. - First book on applying Meta Learning to medical imaging - Pioneers in the field as contributing authors to explain the theory and its development - Has GitHub repository consisting of various code examples and documentation to help the audience to set up Meta-Learning algorithms for their applications quickly
Publisher: Academic Press
ISBN: 0323998526
Category : Computers
Languages : en
Pages : 430
Book Description
Meta-Learning, or learning to learn, has become increasingly popular in recent years. Instead of building AI systems from scratch for each machine learning task, Meta-Learning constructs computational mechanisms to systematically and efficiently adapt to new tasks. The meta-learning paradigm has great potential to address deep neural networks' fundamental challenges such as intensive data requirement, computationally expensive training, and limited capacity for transfer among tasks.This book provides a concise summary of Meta-Learning theories and their diverse applications in medical imaging and health informatics. It covers the unifying theory of meta-learning and its popular variants such as model-agnostic learning, memory augmentation, prototypical networks, and learning to optimize. The book brings together thought leaders from both machine learning and health informatics fields to discuss the current state of Meta-Learning, its relevance to medical imaging and health informatics, and future directions. - First book on applying Meta Learning to medical imaging - Pioneers in the field as contributing authors to explain the theory and its development - Has GitHub repository consisting of various code examples and documentation to help the audience to set up Meta-Learning algorithms for their applications quickly
Artificial Intelligence in the Age of Nanotechnology
Author: Jaber, Wassim
Publisher: IGI Global
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 313
Book Description
In the world of academia, scholars and researchers are confronted with a rapidly expanding knowledge base in Artificial Intelligence (AI) and nanotechnology. The integration of these two groundbreaking fields presents an intricate web of concepts, innovations, and interdisciplinary applications that can overwhelm even the most astute academic minds. Staying up to date with the latest developments and effectively navigating this complex terrain has become a pressing challenge for those striving to contribute meaningfully to these fields. Artificial Intelligence in the Age of Nanotechnology is a transformative solution meticulously crafted to address the academic community's knowledge gaps and challenges. This comprehensive book serves as the guiding light for scholars, researchers, and students grappling with the dynamic synergy between AI and Nanotechnology. It offers a structured and authoritative exploration of the core principles and transformative applications of these domains across diverse fields. By providing clarity and depth, it empowers academics to stay at the forefront of innovation and make informed contributions.
Publisher: IGI Global
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 313
Book Description
In the world of academia, scholars and researchers are confronted with a rapidly expanding knowledge base in Artificial Intelligence (AI) and nanotechnology. The integration of these two groundbreaking fields presents an intricate web of concepts, innovations, and interdisciplinary applications that can overwhelm even the most astute academic minds. Staying up to date with the latest developments and effectively navigating this complex terrain has become a pressing challenge for those striving to contribute meaningfully to these fields. Artificial Intelligence in the Age of Nanotechnology is a transformative solution meticulously crafted to address the academic community's knowledge gaps and challenges. This comprehensive book serves as the guiding light for scholars, researchers, and students grappling with the dynamic synergy between AI and Nanotechnology. It offers a structured and authoritative exploration of the core principles and transformative applications of these domains across diverse fields. By providing clarity and depth, it empowers academics to stay at the forefront of innovation and make informed contributions.
Handbook of Research on AI and ML for Intelligent Machines and Systems
Author: Gupta, Brij B.
Publisher: IGI Global
ISBN:
Category : Computers
Languages : en
Pages : 530
Book Description
The Handbook of Research on AI and ML for Intelligent Machines and Systems offers a comprehensive exploration of the pivotal role played by artificial intelligence (AI) and machine learning (ML) technologies in the development of intelligent machines. As the demand for intelligent machines continues to rise across various sectors, understanding the integration of these advanced technologies becomes paramount. While AI and ML have individually showcased their capabilities in developing robust intelligent machine systems and services, their fusion holds the key to propelling intelligent machines to a new realm of transformation. By compiling recent advancements in intelligent machines that rely on machine learning and deep learning technologies, this book serves as a vital resource for researchers, graduate students, PhD scholars, faculty members, scientists, and software developers. It offers valuable insights into the key concepts of AI and ML, covering essential security aspects, current trends, and often overlooked perspectives that are crucial for achieving comprehensive understanding. It not only explores the theoretical foundations of AI and ML but also provides guidance on applying these techniques to solve real-world problems. Unlike traditional texts, it offers flexibility through its distinctive module-based structure, allowing readers to follow their own learning paths.
Publisher: IGI Global
ISBN:
Category : Computers
Languages : en
Pages : 530
Book Description
The Handbook of Research on AI and ML for Intelligent Machines and Systems offers a comprehensive exploration of the pivotal role played by artificial intelligence (AI) and machine learning (ML) technologies in the development of intelligent machines. As the demand for intelligent machines continues to rise across various sectors, understanding the integration of these advanced technologies becomes paramount. While AI and ML have individually showcased their capabilities in developing robust intelligent machine systems and services, their fusion holds the key to propelling intelligent machines to a new realm of transformation. By compiling recent advancements in intelligent machines that rely on machine learning and deep learning technologies, this book serves as a vital resource for researchers, graduate students, PhD scholars, faculty members, scientists, and software developers. It offers valuable insights into the key concepts of AI and ML, covering essential security aspects, current trends, and often overlooked perspectives that are crucial for achieving comprehensive understanding. It not only explores the theoretical foundations of AI and ML but also provides guidance on applying these techniques to solve real-world problems. Unlike traditional texts, it offers flexibility through its distinctive module-based structure, allowing readers to follow their own learning paths.
Impact of AI on Advancing Women's Safety
Author: Ponnusamy, Sivaram
Publisher: IGI Global
ISBN:
Category : Computers
Languages : en
Pages : 340
Book Description
Women encounter multifaceted threats, ranging from personal safety hazards to discrimination deeply embedded in societal structures. The existing landscape demands innovative strategies to ensure women can participate fully in society without fear or impediment. Traditional systems often fall short, necessitating a paradigm shift in our approach to women's safety. Impact of AI on Advancing Women's Safety emerges as a groundbreaking solution to address the pervasive challenges they face. From the shadows of harassment to systemic biases in justice systems, women navigate a complex landscape. This book delves into the pressing issues, unveiling a visionary approach that leverages artificial intelligence to create tangible, transformative solutions.
Publisher: IGI Global
ISBN:
Category : Computers
Languages : en
Pages : 340
Book Description
Women encounter multifaceted threats, ranging from personal safety hazards to discrimination deeply embedded in societal structures. The existing landscape demands innovative strategies to ensure women can participate fully in society without fear or impediment. Traditional systems often fall short, necessitating a paradigm shift in our approach to women's safety. Impact of AI on Advancing Women's Safety emerges as a groundbreaking solution to address the pervasive challenges they face. From the shadows of harassment to systemic biases in justice systems, women navigate a complex landscape. This book delves into the pressing issues, unveiling a visionary approach that leverages artificial intelligence to create tangible, transformative solutions.
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024
Author: Marius George Linguraru
Publisher: Springer Nature
ISBN: 3031720830
Category :
Languages : en
Pages : 843
Book Description
Publisher: Springer Nature
ISBN: 3031720830
Category :
Languages : en
Pages : 843
Book Description
Cancer Prevention, Detection, and Intervention
Author: Sharib Ali
Publisher: Springer Nature
ISBN: 3031733762
Category :
Languages : en
Pages : 251
Book Description
Publisher: Springer Nature
ISBN: 3031733762
Category :
Languages : en
Pages : 251
Book Description
Meta-Learning
Author: Lan Zou
Publisher: Elsevier
ISBN: 0323903703
Category : Computers
Languages : en
Pages : 404
Book Description
Deep neural networks (DNNs) with their dense and complex algorithms provide real possibilities for Artificial General Intelligence (AGI). Meta-learning with DNNs brings AGI much closer: artificial agents solving intelligent tasks that human beings can achieve, even transcending what they can achieve. Meta-Learning: Theory, Algorithms and Applications shows how meta-learning in combination with DNNs advances towards AGI. Meta-Learning: Theory, Algorithms and Applications explains the fundamentals of meta-learning by providing answers to these questions: What is meta-learning?; why do we need meta-learning?; how are self-improved meta-learning mechanisms heading for AGI ?; how can we use meta-learning in our approach to specific scenarios? The book presents the background of seven mainstream paradigms: meta-learning, few-shot learning, deep learning, transfer learning, machine learning, probabilistic modeling, and Bayesian inference. It then explains important state-of-the-art mechanisms and their variants for meta-learning, including memory-augmented neural networks, meta-networks, convolutional Siamese neural networks, matching networks, prototypical networks, relation networks, LSTM meta-learning, model-agnostic meta-learning, and the Reptile algorithm. The book takes a deep dive into nearly 200 state-of-the-art meta-learning algorithms from top tier conferences (e.g. NeurIPS, ICML, CVPR, ACL, ICLR, KDD). It systematically investigates 39 categories of tasks from 11 real-world application fields: Computer Vision, Natural Language Processing, Meta-Reinforcement Learning, Healthcare, Finance and Economy, Construction Materials, Graphic Neural Networks, Program Synthesis, Smart City, Recommended Systems, and Climate Science. Each application field concludes by looking at future trends or by giving a summary of available resources. Meta-Learning: Theory, Algorithms and Applications is a great resource to understand the principles of meta-learning and to learn state-of-the-art meta-learning algorithms, giving the student, researcher and industry professional the ability to apply meta-learning for various novel applications. A comprehensive overview of state-of-the-art meta-learning techniques and methods associated with deep neural networks together with a broad range of application areas Coverage of nearly 200 state-of-the-art meta-learning algorithms, which are promoted by premier global AI conferences and journals, and 300 to 450 pieces of key research Systematic and detailed exploration of the most crucial state-of-the-art meta-learning algorithm mechanisms: model-based, metric-based, and optimization-based Provides solutions to the limitations of using deep learning and/or machine learning methods, particularly with small sample sizes and unlabeled data Gives an understanding of how meta-learning acts as a stepping stone to Artificial General Intelligence in 39 categories of tasks from 11 real-world application fields
Publisher: Elsevier
ISBN: 0323903703
Category : Computers
Languages : en
Pages : 404
Book Description
Deep neural networks (DNNs) with their dense and complex algorithms provide real possibilities for Artificial General Intelligence (AGI). Meta-learning with DNNs brings AGI much closer: artificial agents solving intelligent tasks that human beings can achieve, even transcending what they can achieve. Meta-Learning: Theory, Algorithms and Applications shows how meta-learning in combination with DNNs advances towards AGI. Meta-Learning: Theory, Algorithms and Applications explains the fundamentals of meta-learning by providing answers to these questions: What is meta-learning?; why do we need meta-learning?; how are self-improved meta-learning mechanisms heading for AGI ?; how can we use meta-learning in our approach to specific scenarios? The book presents the background of seven mainstream paradigms: meta-learning, few-shot learning, deep learning, transfer learning, machine learning, probabilistic modeling, and Bayesian inference. It then explains important state-of-the-art mechanisms and their variants for meta-learning, including memory-augmented neural networks, meta-networks, convolutional Siamese neural networks, matching networks, prototypical networks, relation networks, LSTM meta-learning, model-agnostic meta-learning, and the Reptile algorithm. The book takes a deep dive into nearly 200 state-of-the-art meta-learning algorithms from top tier conferences (e.g. NeurIPS, ICML, CVPR, ACL, ICLR, KDD). It systematically investigates 39 categories of tasks from 11 real-world application fields: Computer Vision, Natural Language Processing, Meta-Reinforcement Learning, Healthcare, Finance and Economy, Construction Materials, Graphic Neural Networks, Program Synthesis, Smart City, Recommended Systems, and Climate Science. Each application field concludes by looking at future trends or by giving a summary of available resources. Meta-Learning: Theory, Algorithms and Applications is a great resource to understand the principles of meta-learning and to learn state-of-the-art meta-learning algorithms, giving the student, researcher and industry professional the ability to apply meta-learning for various novel applications. A comprehensive overview of state-of-the-art meta-learning techniques and methods associated with deep neural networks together with a broad range of application areas Coverage of nearly 200 state-of-the-art meta-learning algorithms, which are promoted by premier global AI conferences and journals, and 300 to 450 pieces of key research Systematic and detailed exploration of the most crucial state-of-the-art meta-learning algorithm mechanisms: model-based, metric-based, and optimization-based Provides solutions to the limitations of using deep learning and/or machine learning methods, particularly with small sample sizes and unlabeled data Gives an understanding of how meta-learning acts as a stepping stone to Artificial General Intelligence in 39 categories of tasks from 11 real-world application fields
Domain Adaptation and Representation Transfer
Author: Konstantinos Kamnitsas
Publisher: Springer Nature
ISBN: 3031168526
Category : Computers
Languages : en
Pages : 158
Book Description
This book constitutes the refereed proceedings of the 4th MICCAI Workshop on Domain Adaptation and Representation Transfer, DART 2022, held in conjunction with MICCAI 2022, in September 2022. DART 2022 accepted 13 papers from the 25 submissions received. The workshop aims at creating a discussion forum to compare, evaluate, and discuss methodological advancements and ideas that can improve the applicability of machine learning (ML)/deep learning (DL) approaches to clinical setting by making them robust and consistent across different domains.
Publisher: Springer Nature
ISBN: 3031168526
Category : Computers
Languages : en
Pages : 158
Book Description
This book constitutes the refereed proceedings of the 4th MICCAI Workshop on Domain Adaptation and Representation Transfer, DART 2022, held in conjunction with MICCAI 2022, in September 2022. DART 2022 accepted 13 papers from the 25 submissions received. The workshop aims at creating a discussion forum to compare, evaluate, and discuss methodological advancements and ideas that can improve the applicability of machine learning (ML)/deep learning (DL) approaches to clinical setting by making them robust and consistent across different domains.
Advances in Smart Healthcare Paradigms and Applications
Author: Halina Kwaśnicka
Publisher: Springer Nature
ISBN: 3031373065
Category : Technology & Engineering
Languages : en
Pages : 230
Book Description
This book is dedicated to showcase research and innovation in smart healthcare systems and technologies led by women scientists, researchers, and practitioners. With the advent of artificial intelligence (AI) and related technologies, the healthcare sector has undergone tremendous changes in practice and management in recent years. On par to men, women have made significant contributions to tackle a variety of healthcare problems, creating smarter paradigms to provide effective and efficient solutions for patients and stakeholders. The book presents a small collection of contributions by outstanding women in STEM (Science, Technology, Engineering and Mathematics) education, focusing on the healthcare domain. The selected articles allow readers to comprehend current advances in AI and other methods for undertaking healthcare challenges. It is envisaged that the inspiring work by prominent women scientists, researchers, and practitioners reported in this book offers a beacon to propel women in pursuing STEM education and advancing the healthcare sector for the benefits of humankind.
Publisher: Springer Nature
ISBN: 3031373065
Category : Technology & Engineering
Languages : en
Pages : 230
Book Description
This book is dedicated to showcase research and innovation in smart healthcare systems and technologies led by women scientists, researchers, and practitioners. With the advent of artificial intelligence (AI) and related technologies, the healthcare sector has undergone tremendous changes in practice and management in recent years. On par to men, women have made significant contributions to tackle a variety of healthcare problems, creating smarter paradigms to provide effective and efficient solutions for patients and stakeholders. The book presents a small collection of contributions by outstanding women in STEM (Science, Technology, Engineering and Mathematics) education, focusing on the healthcare domain. The selected articles allow readers to comprehend current advances in AI and other methods for undertaking healthcare challenges. It is envisaged that the inspiring work by prominent women scientists, researchers, and practitioners reported in this book offers a beacon to propel women in pursuing STEM education and advancing the healthcare sector for the benefits of humankind.