Author: Mathias Harrer
Publisher: CRC Press
ISBN: 1000435636
Category : Mathematics
Languages : en
Pages : 500
Book Description
Doing Meta-Analysis with R: A Hands-On Guide serves as an accessible introduction on how meta-analyses can be conducted in R. Essential steps for meta-analysis are covered, including calculation and pooling of outcome measures, forest plots, heterogeneity diagnostics, subgroup analyses, meta-regression, methods to control for publication bias, risk of bias assessments and plotting tools. Advanced but highly relevant topics such as network meta-analysis, multi-three-level meta-analyses, Bayesian meta-analysis approaches and SEM meta-analysis are also covered. A companion R package, dmetar, is introduced at the beginning of the guide. It contains data sets and several helper functions for the meta and metafor package used in the guide. The programming and statistical background covered in the book are kept at a non-expert level, making the book widely accessible. Features • Contains two introductory chapters on how to set up an R environment and do basic imports/manipulations of meta-analysis data, including exercises • Describes statistical concepts clearly and concisely before applying them in R • Includes step-by-step guidance through the coding required to perform meta-analyses, and a companion R package for the book
Doing Meta-Analysis with R
Author: Mathias Harrer
Publisher: CRC Press
ISBN: 1000435636
Category : Mathematics
Languages : en
Pages : 500
Book Description
Doing Meta-Analysis with R: A Hands-On Guide serves as an accessible introduction on how meta-analyses can be conducted in R. Essential steps for meta-analysis are covered, including calculation and pooling of outcome measures, forest plots, heterogeneity diagnostics, subgroup analyses, meta-regression, methods to control for publication bias, risk of bias assessments and plotting tools. Advanced but highly relevant topics such as network meta-analysis, multi-three-level meta-analyses, Bayesian meta-analysis approaches and SEM meta-analysis are also covered. A companion R package, dmetar, is introduced at the beginning of the guide. It contains data sets and several helper functions for the meta and metafor package used in the guide. The programming and statistical background covered in the book are kept at a non-expert level, making the book widely accessible. Features • Contains two introductory chapters on how to set up an R environment and do basic imports/manipulations of meta-analysis data, including exercises • Describes statistical concepts clearly and concisely before applying them in R • Includes step-by-step guidance through the coding required to perform meta-analyses, and a companion R package for the book
Publisher: CRC Press
ISBN: 1000435636
Category : Mathematics
Languages : en
Pages : 500
Book Description
Doing Meta-Analysis with R: A Hands-On Guide serves as an accessible introduction on how meta-analyses can be conducted in R. Essential steps for meta-analysis are covered, including calculation and pooling of outcome measures, forest plots, heterogeneity diagnostics, subgroup analyses, meta-regression, methods to control for publication bias, risk of bias assessments and plotting tools. Advanced but highly relevant topics such as network meta-analysis, multi-three-level meta-analyses, Bayesian meta-analysis approaches and SEM meta-analysis are also covered. A companion R package, dmetar, is introduced at the beginning of the guide. It contains data sets and several helper functions for the meta and metafor package used in the guide. The programming and statistical background covered in the book are kept at a non-expert level, making the book widely accessible. Features • Contains two introductory chapters on how to set up an R environment and do basic imports/manipulations of meta-analysis data, including exercises • Describes statistical concepts clearly and concisely before applying them in R • Includes step-by-step guidance through the coding required to perform meta-analyses, and a companion R package for the book
Cochrane Handbook for Systematic Reviews of Interventions
Author: Julian P. T. Higgins
Publisher: Wiley
ISBN: 9780470699515
Category : Medical
Languages : en
Pages : 672
Book Description
Healthcare providers, consumers, researchers and policy makers are inundated with unmanageable amounts of information, including evidence from healthcare research. It has become impossible for all to have the time and resources to find, appraise and interpret this evidence and incorporate it into healthcare decisions. Cochrane Reviews respond to this challenge by identifying, appraising and synthesizing research-based evidence and presenting it in a standardized format, published in The Cochrane Library (www.thecochranelibrary.com). The Cochrane Handbook for Systematic Reviews of Interventions contains methodological guidance for the preparation and maintenance of Cochrane intervention reviews. Written in a clear and accessible format, it is the essential manual for all those preparing, maintaining and reading Cochrane reviews. Many of the principles and methods described here are appropriate for systematic reviews applied to other types of research and to systematic reviews of interventions undertaken by others. It is hoped therefore that this book will be invaluable to all those who want to understand the role of systematic reviews, critically appraise published reviews or perform reviews themselves.
Publisher: Wiley
ISBN: 9780470699515
Category : Medical
Languages : en
Pages : 672
Book Description
Healthcare providers, consumers, researchers and policy makers are inundated with unmanageable amounts of information, including evidence from healthcare research. It has become impossible for all to have the time and resources to find, appraise and interpret this evidence and incorporate it into healthcare decisions. Cochrane Reviews respond to this challenge by identifying, appraising and synthesizing research-based evidence and presenting it in a standardized format, published in The Cochrane Library (www.thecochranelibrary.com). The Cochrane Handbook for Systematic Reviews of Interventions contains methodological guidance for the preparation and maintenance of Cochrane intervention reviews. Written in a clear and accessible format, it is the essential manual for all those preparing, maintaining and reading Cochrane reviews. Many of the principles and methods described here are appropriate for systematic reviews applied to other types of research and to systematic reviews of interventions undertaken by others. It is hoped therefore that this book will be invaluable to all those who want to understand the role of systematic reviews, critically appraise published reviews or perform reviews themselves.
Introduction to Meta-Analysis
Author: Michael Borenstein
Publisher: John Wiley & Sons
ISBN: 1119964377
Category : Medical
Languages : en
Pages : 350
Book Description
This book provides a clear and thorough introduction to meta-analysis, the process of synthesizing data from a series of separate studies. Meta-analysis has become a critically important tool in fields as diverse as medicine, pharmacology, epidemiology, education, psychology, business, and ecology. Introduction to Meta-Analysis: Outlines the role of meta-analysis in the research process Shows how to compute effects sizes and treatment effects Explains the fixed-effect and random-effects models for synthesizing data Demonstrates how to assess and interpret variation in effect size across studies Clarifies concepts using text and figures, followed by formulas and examples Explains how to avoid common mistakes in meta-analysis Discusses controversies in meta-analysis Features a web site with additional material and exercises A superb combination of lucid prose and informative graphics, written by four of the world’s leading experts on all aspects of meta-analysis. Borenstein, Hedges, Higgins, and Rothstein provide a refreshing departure from cookbook approaches with their clear explanations of the what and why of meta-analysis. The book is ideal as a course textbook or for self-study. My students, who used pre-publication versions of some of the chapters, raved about the clarity of the explanations and examples. David Rindskopf, Distinguished Professor of Educational Psychology, City University of New York, Graduate School and University Center, & Editor of the Journal of Educational and Behavioral Statistics. The approach taken by Introduction to Meta-analysis is intended to be primarily conceptual, and it is amazingly successful at achieving that goal. The reader can comfortably skip the formulas and still understand their application and underlying motivation. For the more statistically sophisticated reader, the relevant formulas and worked examples provide a superb practical guide to performing a meta-analysis. The book provides an eclectic mix of examples from education, social science, biomedical studies, and even ecology. For anyone considering leading a course in meta-analysis, or pursuing self-directed study, Introduction to Meta-analysis would be a clear first choice. Jesse A. Berlin, ScD Introduction to Meta-Analysis is an excellent resource for novices and experts alike. The book provides a clear and comprehensive presentation of all basic and most advanced approaches to meta-analysis. This book will be referenced for decades. Michael A. McDaniel, Professor of Human Resources and Organizational Behavior, Virginia Commonwealth University
Publisher: John Wiley & Sons
ISBN: 1119964377
Category : Medical
Languages : en
Pages : 350
Book Description
This book provides a clear and thorough introduction to meta-analysis, the process of synthesizing data from a series of separate studies. Meta-analysis has become a critically important tool in fields as diverse as medicine, pharmacology, epidemiology, education, psychology, business, and ecology. Introduction to Meta-Analysis: Outlines the role of meta-analysis in the research process Shows how to compute effects sizes and treatment effects Explains the fixed-effect and random-effects models for synthesizing data Demonstrates how to assess and interpret variation in effect size across studies Clarifies concepts using text and figures, followed by formulas and examples Explains how to avoid common mistakes in meta-analysis Discusses controversies in meta-analysis Features a web site with additional material and exercises A superb combination of lucid prose and informative graphics, written by four of the world’s leading experts on all aspects of meta-analysis. Borenstein, Hedges, Higgins, and Rothstein provide a refreshing departure from cookbook approaches with their clear explanations of the what and why of meta-analysis. The book is ideal as a course textbook or for self-study. My students, who used pre-publication versions of some of the chapters, raved about the clarity of the explanations and examples. David Rindskopf, Distinguished Professor of Educational Psychology, City University of New York, Graduate School and University Center, & Editor of the Journal of Educational and Behavioral Statistics. The approach taken by Introduction to Meta-analysis is intended to be primarily conceptual, and it is amazingly successful at achieving that goal. The reader can comfortably skip the formulas and still understand their application and underlying motivation. For the more statistically sophisticated reader, the relevant formulas and worked examples provide a superb practical guide to performing a meta-analysis. The book provides an eclectic mix of examples from education, social science, biomedical studies, and even ecology. For anyone considering leading a course in meta-analysis, or pursuing self-directed study, Introduction to Meta-analysis would be a clear first choice. Jesse A. Berlin, ScD Introduction to Meta-Analysis is an excellent resource for novices and experts alike. The book provides a clear and comprehensive presentation of all basic and most advanced approaches to meta-analysis. This book will be referenced for decades. Michael A. McDaniel, Professor of Human Resources and Organizational Behavior, Virginia Commonwealth University
Advances in Meta-Analysis
Author: Terri Pigott
Publisher: Springer Science & Business Media
ISBN: 1461422779
Category : Mathematics
Languages : en
Pages : 166
Book Description
The subject of the book is advanced statistical analyses for quantitative research synthesis (meta-analysis), and selected practical issues relating to research synthesis that are not covered in detail in the many existing introductory books on research synthesis (or meta-analysis). Complex statistical issues are arising more frequently as the primary research that is summarized in quantitative syntheses itself becomes more complex, and as researchers who are conducting meta-analyses become more ambitious in the questions they wish to address. Also as researchers have gained more experience in conducting research syntheses, several key issues have persisted and now appear fundamental to the enterprise of summarizing research. Specifically the book describes multivariate analyses for several indices commonly used in meta-analysis (e.g., correlations, effect sizes, proportions and/or odds ratios), will outline how to do power analysis for meta-analysis (again for each of the different kinds of study outcome indices), and examines issues around research quality and research design and their roles in synthesis. For each of the statistical topics we will examine the different possible statistical models (i.e., fixed, random, and mixed models) that could be adopted by a researcher. In dealing with the issues of study quality and research design it covers a number of specific topics that are of broad concern to research synthesists. In many fields a current issue is how to make sense of results when studies using several different designs appear in a research literature (e.g., Morris & Deshon, 1997, 2002). In education and other social sciences a critical aspect of this issue is how one might incorporate qualitative (e.g., case study) research within a synthesis. In medicine, related issues concern whether and how to summarize observational studies, and whether they should be combined with randomized controlled trials (or even if they should be combined at all). For each topic, included is a worked example (e.g., for the statistical analyses) and/or a detailed description of a published research synthesis that deals with the practical (non-statistical) issues covered.
Publisher: Springer Science & Business Media
ISBN: 1461422779
Category : Mathematics
Languages : en
Pages : 166
Book Description
The subject of the book is advanced statistical analyses for quantitative research synthesis (meta-analysis), and selected practical issues relating to research synthesis that are not covered in detail in the many existing introductory books on research synthesis (or meta-analysis). Complex statistical issues are arising more frequently as the primary research that is summarized in quantitative syntheses itself becomes more complex, and as researchers who are conducting meta-analyses become more ambitious in the questions they wish to address. Also as researchers have gained more experience in conducting research syntheses, several key issues have persisted and now appear fundamental to the enterprise of summarizing research. Specifically the book describes multivariate analyses for several indices commonly used in meta-analysis (e.g., correlations, effect sizes, proportions and/or odds ratios), will outline how to do power analysis for meta-analysis (again for each of the different kinds of study outcome indices), and examines issues around research quality and research design and their roles in synthesis. For each of the statistical topics we will examine the different possible statistical models (i.e., fixed, random, and mixed models) that could be adopted by a researcher. In dealing with the issues of study quality and research design it covers a number of specific topics that are of broad concern to research synthesists. In many fields a current issue is how to make sense of results when studies using several different designs appear in a research literature (e.g., Morris & Deshon, 1997, 2002). In education and other social sciences a critical aspect of this issue is how one might incorporate qualitative (e.g., case study) research within a synthesis. In medicine, related issues concern whether and how to summarize observational studies, and whether they should be combined with randomized controlled trials (or even if they should be combined at all). For each topic, included is a worked example (e.g., for the statistical analyses) and/or a detailed description of a published research synthesis that deals with the practical (non-statistical) issues covered.
Meta-Analysis with R
Author: Guido Schwarzer
Publisher: Springer
ISBN: 3319214160
Category : Medical
Languages : en
Pages : 256
Book Description
This book provides a comprehensive introduction to performing meta-analysis using the statistical software R. It is intended for quantitative researchers and students in the medical and social sciences who wish to learn how to perform meta-analysis with R. As such, the book introduces the key concepts and models used in meta-analysis. It also includes chapters on the following advanced topics: publication bias and small study effects; missing data; multivariate meta-analysis, network meta-analysis; and meta-analysis of diagnostic studies.
Publisher: Springer
ISBN: 3319214160
Category : Medical
Languages : en
Pages : 256
Book Description
This book provides a comprehensive introduction to performing meta-analysis using the statistical software R. It is intended for quantitative researchers and students in the medical and social sciences who wish to learn how to perform meta-analysis with R. As such, the book introduces the key concepts and models used in meta-analysis. It also includes chapters on the following advanced topics: publication bias and small study effects; missing data; multivariate meta-analysis, network meta-analysis; and meta-analysis of diagnostic studies.
Network Meta-Analysis for Decision-Making
Author: Sofia Dias
Publisher: John Wiley & Sons
ISBN: 1118647505
Category : Mathematics
Languages : en
Pages : 484
Book Description
A practical guide to network meta-analysis with examples and code In the evaluation of healthcare, rigorous methods of quantitative assessment are necessary to establish which interventions are effective and cost-effective. Often a single study will not provide the answers and it is desirable to synthesise evidence from multiple sources, usually randomised controlled trials. This book takes an approach to evidence synthesis that is specifically intended for decision making when there are two or more treatment alternatives being evaluated, and assumes that the purpose of every synthesis is to answer the question "for this pre-identified population of patients, which treatment is 'best'?" A comprehensive, coherent framework for network meta-analysis (mixed treatment comparisons) is adopted and estimated using Bayesian Markov Chain Monte Carlo methods implemented in the freely available software WinBUGS. Each chapter contains worked examples, exercises, solutions and code that may be adapted by readers to apply to their own analyses. This book can be used as an introduction to evidence synthesis and network meta-analysis, its key properties and policy implications. Examples and advanced methods are also presented for the more experienced reader. Methods used throughout this book can be applied consistently: model critique and checking for evidence consistency are emphasised. Methods are based on technical support documents produced for NICE Decision Support Unit, which support the NICE Methods of Technology Appraisal. Code presented is also the basis for the code used by the ISPOR Task Force on Indirect Comparisons. Includes extensive carefully worked examples, with thorough explanations of how to set out data for use in WinBUGS and how to interpret the output. Network Meta-Analysis for Decision Making will be of interest to decision makers, medical statisticians, health economists, and anyone involved in Health Technology Assessment including the pharmaceutical industry.
Publisher: John Wiley & Sons
ISBN: 1118647505
Category : Mathematics
Languages : en
Pages : 484
Book Description
A practical guide to network meta-analysis with examples and code In the evaluation of healthcare, rigorous methods of quantitative assessment are necessary to establish which interventions are effective and cost-effective. Often a single study will not provide the answers and it is desirable to synthesise evidence from multiple sources, usually randomised controlled trials. This book takes an approach to evidence synthesis that is specifically intended for decision making when there are two or more treatment alternatives being evaluated, and assumes that the purpose of every synthesis is to answer the question "for this pre-identified population of patients, which treatment is 'best'?" A comprehensive, coherent framework for network meta-analysis (mixed treatment comparisons) is adopted and estimated using Bayesian Markov Chain Monte Carlo methods implemented in the freely available software WinBUGS. Each chapter contains worked examples, exercises, solutions and code that may be adapted by readers to apply to their own analyses. This book can be used as an introduction to evidence synthesis and network meta-analysis, its key properties and policy implications. Examples and advanced methods are also presented for the more experienced reader. Methods used throughout this book can be applied consistently: model critique and checking for evidence consistency are emphasised. Methods are based on technical support documents produced for NICE Decision Support Unit, which support the NICE Methods of Technology Appraisal. Code presented is also the basis for the code used by the ISPOR Task Force on Indirect Comparisons. Includes extensive carefully worked examples, with thorough explanations of how to set out data for use in WinBUGS and how to interpret the output. Network Meta-Analysis for Decision Making will be of interest to decision makers, medical statisticians, health economists, and anyone involved in Health Technology Assessment including the pharmaceutical industry.
Meta-Analysis
Author: Shahjahan Khan
Publisher: Springer Nature
ISBN: 9811550328
Category : Medical
Languages : en
Pages : 294
Book Description
This book focuses on performing hands-on meta-analysis using MetaXL, a free add-on to MS Excel. The illustrative examples are taken mainly from medical and health sciences studies, but the generic methods can be used to perform meta-analysis on data from any other discipline. The book adopts a step-by-step approach to perform meta-analyses and interpret the results. Stata codes for meta-analyses are also provided. All popularly used meta-analytic methods and models – such as the fixed effect model, random effects model, inverse variance heterogeneity model, and quality effect model – are used to find the confidence interval for the effect size measure of independent primary studies and the pooled study. In addition to the commonly used meta-analytic methods for various effect size measures, the book includes special topics such as meta-regression, dose-response meta-analysis, and publication bias. The main attraction for readers is the book’s simplicity and straightforwardness in conducting actual meta-analysis using MetaXL. Researchers would easily find everything on meta-analysis of any particular effect size in one specific chapter once they could determine the underlying effect measure. Readers will be able to see the results under different models and also will be able to select the correct model to obtain accurate results.
Publisher: Springer Nature
ISBN: 9811550328
Category : Medical
Languages : en
Pages : 294
Book Description
This book focuses on performing hands-on meta-analysis using MetaXL, a free add-on to MS Excel. The illustrative examples are taken mainly from medical and health sciences studies, but the generic methods can be used to perform meta-analysis on data from any other discipline. The book adopts a step-by-step approach to perform meta-analyses and interpret the results. Stata codes for meta-analyses are also provided. All popularly used meta-analytic methods and models – such as the fixed effect model, random effects model, inverse variance heterogeneity model, and quality effect model – are used to find the confidence interval for the effect size measure of independent primary studies and the pooled study. In addition to the commonly used meta-analytic methods for various effect size measures, the book includes special topics such as meta-regression, dose-response meta-analysis, and publication bias. The main attraction for readers is the book’s simplicity and straightforwardness in conducting actual meta-analysis using MetaXL. Researchers would easily find everything on meta-analysis of any particular effect size in one specific chapter once they could determine the underlying effect measure. Readers will be able to see the results under different models and also will be able to select the correct model to obtain accurate results.
Statistical Meta-Analysis with Applications
Author: Joachim Hartung
Publisher: John Wiley & Sons
ISBN: 1118210964
Category : Medical
Languages : en
Pages : 215
Book Description
An accessible introduction to performing meta-analysis across various areas of research The practice of meta-analysis allows researchers to obtain findings from various studies and compile them to verify and form one overall conclusion. Statistical Meta-Analysis with Applications presents the necessary statistical methodologies that allow readers to tackle the four main stages of meta-analysis: problem formulation, data collection, data evaluation, and data analysis and interpretation. Combining the authors' expertise on the topic with a wealth of up-to-date information, this book successfully introduces the essential statistical practices for making thorough and accurate discoveries across a wide array of diverse fields, such as business, public health, biostatistics, and environmental studies. Two main types of statistical analysis serve as the foundation of the methods and techniques: combining tests of effect size and combining estimates of effect size. Additional topics covered include: Meta-analysis regression procedures Multiple-endpoint and multiple-treatment studies The Bayesian approach to meta-analysis Publication bias Vote counting procedures Methods for combining individual tests and combining individual estimates Using meta-analysis to analyze binary and ordinal categorical data Numerous worked-out examples in each chapter provide the reader with a step-by-step understanding of the presented methods. All exercises can be computed using the R and SAS software packages, which are both available via the book's related Web site. Extensive references are also included, outlining additional sources for further study. Requiring only a working knowledge of statistics, Statistical Meta-Analysis with Applications is a valuable supplement for courses in biostatistics, business, public health, and social research at the upper-undergraduate and graduate levels. It is also an excellent reference for applied statisticians working in industry, academia, and government.
Publisher: John Wiley & Sons
ISBN: 1118210964
Category : Medical
Languages : en
Pages : 215
Book Description
An accessible introduction to performing meta-analysis across various areas of research The practice of meta-analysis allows researchers to obtain findings from various studies and compile them to verify and form one overall conclusion. Statistical Meta-Analysis with Applications presents the necessary statistical methodologies that allow readers to tackle the four main stages of meta-analysis: problem formulation, data collection, data evaluation, and data analysis and interpretation. Combining the authors' expertise on the topic with a wealth of up-to-date information, this book successfully introduces the essential statistical practices for making thorough and accurate discoveries across a wide array of diverse fields, such as business, public health, biostatistics, and environmental studies. Two main types of statistical analysis serve as the foundation of the methods and techniques: combining tests of effect size and combining estimates of effect size. Additional topics covered include: Meta-analysis regression procedures Multiple-endpoint and multiple-treatment studies The Bayesian approach to meta-analysis Publication bias Vote counting procedures Methods for combining individual tests and combining individual estimates Using meta-analysis to analyze binary and ordinal categorical data Numerous worked-out examples in each chapter provide the reader with a step-by-step understanding of the presented methods. All exercises can be computed using the R and SAS software packages, which are both available via the book's related Web site. Extensive references are also included, outlining additional sources for further study. Requiring only a working knowledge of statistics, Statistical Meta-Analysis with Applications is a valuable supplement for courses in biostatistics, business, public health, and social research at the upper-undergraduate and graduate levels. It is also an excellent reference for applied statisticians working in industry, academia, and government.
Methods for Meta-Analysis in Medical Research
Author: A. J. Sutton
Publisher: Wiley-Blackwell
ISBN:
Category : Mathematics
Languages : en
Pages : 360
Book Description
Major text including chapters on the following: defining outcome measures; assessing heterogeneity; using fixed effects methods and random effects models for combining study estimates; publication bias.
Publisher: Wiley-Blackwell
ISBN:
Category : Mathematics
Languages : en
Pages : 360
Book Description
Major text including chapters on the following: defining outcome measures; assessing heterogeneity; using fixed effects methods and random effects models for combining study estimates; publication bias.
Systematic Reviews in Health Care
Author: Matthias Egger
Publisher: John Wiley & Sons
ISBN: 0470693142
Category : Medical
Languages : en
Pages : 512
Book Description
The second edition of this best-selling book has been thoroughly revised and expanded to reflect the significant changes and advances made in systematic reviewing. New features include discussion on the rationale, meta-analyses of prognostic and diagnostic studies and software, and the use of systematic reviews in practice.
Publisher: John Wiley & Sons
ISBN: 0470693142
Category : Medical
Languages : en
Pages : 512
Book Description
The second edition of this best-selling book has been thoroughly revised and expanded to reflect the significant changes and advances made in systematic reviewing. New features include discussion on the rationale, meta-analyses of prognostic and diagnostic studies and software, and the use of systematic reviews in practice.