Author: Hua Li
Publisher: CRC Press
ISBN: 1466517468
Category : Mathematics
Languages : en
Pages : 451
Book Description
Meshless, or meshfree methods, which overcome many of the limitations of the finite element method, have achieved significant progress in numerical computations of a wide range of engineering problems. A comprehensive introduction to meshless methods, Meshless Methods and Their Numerical Properties gives complete mathematical formulations for the most important and classical methods, as well as several methods recently developed by the authors. This book also offers a rigorous mathematical treatment of their numerical properties—including consistency, convergence, stability, and adaptivity—to help you choose the method that is best suited for your needs. Get Guidance for Developing and Testing Meshless Methods Developing a broad framework to study the numerical computational characteristics of meshless methods, the book presents consistency, convergence, stability, and adaptive analyses to offer guidance for developing and testing a particular meshless method. The authors demonstrate the numerical properties by solving several differential equations, which offer a clearer understanding of the concepts. They also explain the difference between the finite element and meshless methods. Explore Engineering Applications of Meshless Methods The book examines how meshless methods can be used to solve complex engineering problems with lower computational cost, higher accuracy, easier construction of higher-order shape functions, and easier handling of large deformation and nonlinear problems. The numerical examples include engineering problems such as the CAD design of MEMS devices, nonlinear fluid-structure analysis of near-bed submarine pipelines, and two-dimensional multiphysics simulation of pH-sensitive hydrogels. Appendices supply useful template functions, flowcharts, and data structures to assist you in implementing meshless methods. Choose the Best Method for a Particular Problem Providing insight into the special features and intricacies of meshless methods, this is a valuable reference for anyone developing new high-performance numerical methods or working on the modelling and simulation of practical engineering problems. It guides you in comparing and verifying meshless methods so that you can more confidently select the best method to solve a particular problem.
Meshless Methods and Their Numerical Properties
Author: Hua Li
Publisher: CRC Press
ISBN: 1466517468
Category : Mathematics
Languages : en
Pages : 451
Book Description
Meshless, or meshfree methods, which overcome many of the limitations of the finite element method, have achieved significant progress in numerical computations of a wide range of engineering problems. A comprehensive introduction to meshless methods, Meshless Methods and Their Numerical Properties gives complete mathematical formulations for the most important and classical methods, as well as several methods recently developed by the authors. This book also offers a rigorous mathematical treatment of their numerical properties—including consistency, convergence, stability, and adaptivity—to help you choose the method that is best suited for your needs. Get Guidance for Developing and Testing Meshless Methods Developing a broad framework to study the numerical computational characteristics of meshless methods, the book presents consistency, convergence, stability, and adaptive analyses to offer guidance for developing and testing a particular meshless method. The authors demonstrate the numerical properties by solving several differential equations, which offer a clearer understanding of the concepts. They also explain the difference between the finite element and meshless methods. Explore Engineering Applications of Meshless Methods The book examines how meshless methods can be used to solve complex engineering problems with lower computational cost, higher accuracy, easier construction of higher-order shape functions, and easier handling of large deformation and nonlinear problems. The numerical examples include engineering problems such as the CAD design of MEMS devices, nonlinear fluid-structure analysis of near-bed submarine pipelines, and two-dimensional multiphysics simulation of pH-sensitive hydrogels. Appendices supply useful template functions, flowcharts, and data structures to assist you in implementing meshless methods. Choose the Best Method for a Particular Problem Providing insight into the special features and intricacies of meshless methods, this is a valuable reference for anyone developing new high-performance numerical methods or working on the modelling and simulation of practical engineering problems. It guides you in comparing and verifying meshless methods so that you can more confidently select the best method to solve a particular problem.
Publisher: CRC Press
ISBN: 1466517468
Category : Mathematics
Languages : en
Pages : 451
Book Description
Meshless, or meshfree methods, which overcome many of the limitations of the finite element method, have achieved significant progress in numerical computations of a wide range of engineering problems. A comprehensive introduction to meshless methods, Meshless Methods and Their Numerical Properties gives complete mathematical formulations for the most important and classical methods, as well as several methods recently developed by the authors. This book also offers a rigorous mathematical treatment of their numerical properties—including consistency, convergence, stability, and adaptivity—to help you choose the method that is best suited for your needs. Get Guidance for Developing and Testing Meshless Methods Developing a broad framework to study the numerical computational characteristics of meshless methods, the book presents consistency, convergence, stability, and adaptive analyses to offer guidance for developing and testing a particular meshless method. The authors demonstrate the numerical properties by solving several differential equations, which offer a clearer understanding of the concepts. They also explain the difference between the finite element and meshless methods. Explore Engineering Applications of Meshless Methods The book examines how meshless methods can be used to solve complex engineering problems with lower computational cost, higher accuracy, easier construction of higher-order shape functions, and easier handling of large deformation and nonlinear problems. The numerical examples include engineering problems such as the CAD design of MEMS devices, nonlinear fluid-structure analysis of near-bed submarine pipelines, and two-dimensional multiphysics simulation of pH-sensitive hydrogels. Appendices supply useful template functions, flowcharts, and data structures to assist you in implementing meshless methods. Choose the Best Method for a Particular Problem Providing insight into the special features and intricacies of meshless methods, this is a valuable reference for anyone developing new high-performance numerical methods or working on the modelling and simulation of practical engineering problems. It guides you in comparing and verifying meshless methods so that you can more confidently select the best method to solve a particular problem.
Meshless Methods and Their Numerical Properties
Author: Hua Li
Publisher: CRC Press
ISBN: 1466517476
Category : Mathematics
Languages : en
Pages : 429
Book Description
Meshless, or meshfree methods, which overcome many of the limitations of the finite element method, have achieved significant progress in numerical computations of a wide range of engineering problems. A comprehensive introduction to meshless methods, Meshless Methods and Their Numerical Properties gives complete mathematical formulations for the m
Publisher: CRC Press
ISBN: 1466517476
Category : Mathematics
Languages : en
Pages : 429
Book Description
Meshless, or meshfree methods, which overcome many of the limitations of the finite element method, have achieved significant progress in numerical computations of a wide range of engineering problems. A comprehensive introduction to meshless methods, Meshless Methods and Their Numerical Properties gives complete mathematical formulations for the m
Environmental Contaminants
Author: Tarun Gupta
Publisher: Springer
ISBN: 9811073325
Category : Science
Languages : en
Pages : 441
Book Description
This book addresses the measurement of environmental contaminants in water, air, and soil. It also presents modifications of and improvements to existing control technologies for remediation of environmental contaminants. It covers improved designs of wastewater systems and innovations in designing newer membranes for water treatment. In addition, it includes two separate sections on the modelling and control of different existing and emerging pollutants. It covers major topics such as: pharmaceutical wastes, paper and pulp waste, poly aromatic hydrocarbons, mining dust, bioaerosols, endosulphan, biomass combustion, and landfill design aspects. It also features chapters on environmental exposure and modelling of aerosol deposition within human lungs. The content of this book will be of interest to researchers, professionals, and policymakers whose work involves environmental contaminants and related solutions.
Publisher: Springer
ISBN: 9811073325
Category : Science
Languages : en
Pages : 441
Book Description
This book addresses the measurement of environmental contaminants in water, air, and soil. It also presents modifications of and improvements to existing control technologies for remediation of environmental contaminants. It covers improved designs of wastewater systems and innovations in designing newer membranes for water treatment. In addition, it includes two separate sections on the modelling and control of different existing and emerging pollutants. It covers major topics such as: pharmaceutical wastes, paper and pulp waste, poly aromatic hydrocarbons, mining dust, bioaerosols, endosulphan, biomass combustion, and landfill design aspects. It also features chapters on environmental exposure and modelling of aerosol deposition within human lungs. The content of this book will be of interest to researchers, professionals, and policymakers whose work involves environmental contaminants and related solutions.
Hygro-Thermo-Magneto-Electro-Elastic Theory of Anisotropic Doubly-Curved Shells
Author: Francesco Tornabene
Publisher: Società Editrice Esculapio
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 1073
Book Description
This book aims to present in depth several Higher-order Shear Deformation Theories (HSDTs) by means of a unified approach for studying the Hygro-Thermo-Magneto-Electro- Elastic Theory of Anisotropic Doubly-Curved Shells. In particular, a general coupled multifield theory regarding anisotropic shell structures is provided. The three-dimensional multifield problem is reduced in a two-dimensional one following the principles of the Equivalent Single Layer (ESL) approach and the Equivalent Layer-Wise (ELW) approach, setting a proper configuration model. According to the adopted configuration assumptions, several Higher-order Shear Deformation Theories (HSDTs) are obtained. Furthermore, the strong and weak formulations of the corresponding governing equations are discussed and illustrated. The approach presented in this volume is completely general and represents a valid tool to investigate the physical behavior of many arbitrarily shaped structures. An isogeometric mapping procedure is also illustrated to this aim. Special attention is given also to advanced and innovative constituents, such as Carbon Nanotubes (CNTs), Variable Angle Tow (VAT) composites and Functionally Graded Materials (FGMs). In addition, several numerical applications are used to support the theoretical models. Accurate, efficient and reliable numerical techniques able to approximate both derivatives and integrals are considered, which are respectively the Differential Quadrature (DQ) and Integral Quadrature (IQ) methods. The Theory of Composite Thin Shells is derived in a simple and intuitive manner from the theory of thick and moderately thick shells (First-order Shear Deformation Theory or Reissner- Mindlin Theory). In particular, the Kirchhoff-Love Theory and the Membrane Theory for composite shells are shown. Furthermore, the Theory of Composite Arches and Beams is also exposed. In particular, the equations of the Timoshenko Theory and the Euler-Bernoulli Theory are directly deducted from the equations of singly-curved shells of translation and of plates.
Publisher: Società Editrice Esculapio
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 1073
Book Description
This book aims to present in depth several Higher-order Shear Deformation Theories (HSDTs) by means of a unified approach for studying the Hygro-Thermo-Magneto-Electro- Elastic Theory of Anisotropic Doubly-Curved Shells. In particular, a general coupled multifield theory regarding anisotropic shell structures is provided. The three-dimensional multifield problem is reduced in a two-dimensional one following the principles of the Equivalent Single Layer (ESL) approach and the Equivalent Layer-Wise (ELW) approach, setting a proper configuration model. According to the adopted configuration assumptions, several Higher-order Shear Deformation Theories (HSDTs) are obtained. Furthermore, the strong and weak formulations of the corresponding governing equations are discussed and illustrated. The approach presented in this volume is completely general and represents a valid tool to investigate the physical behavior of many arbitrarily shaped structures. An isogeometric mapping procedure is also illustrated to this aim. Special attention is given also to advanced and innovative constituents, such as Carbon Nanotubes (CNTs), Variable Angle Tow (VAT) composites and Functionally Graded Materials (FGMs). In addition, several numerical applications are used to support the theoretical models. Accurate, efficient and reliable numerical techniques able to approximate both derivatives and integrals are considered, which are respectively the Differential Quadrature (DQ) and Integral Quadrature (IQ) methods. The Theory of Composite Thin Shells is derived in a simple and intuitive manner from the theory of thick and moderately thick shells (First-order Shear Deformation Theory or Reissner- Mindlin Theory). In particular, the Kirchhoff-Love Theory and the Membrane Theory for composite shells are shown. Furthermore, the Theory of Composite Arches and Beams is also exposed. In particular, the equations of the Timoshenko Theory and the Euler-Bernoulli Theory are directly deducted from the equations of singly-curved shells of translation and of plates.
An Introduction to Meshfree Methods and Their Programming
Author: G.R. Liu
Publisher: Springer Science & Business Media
ISBN: 1402034687
Category : Technology & Engineering
Languages : en
Pages : 497
Book Description
The finite difference method (FDM) hasbeen used tosolve differential equation systems for centuries. The FDM works well for problems of simple geometry and was widely used before the invention of the much more efficient, robust finite element method (FEM). FEM is now widely used in handling problems with complex geometry. Currently, we are using and developing even more powerful numerical techniques aiming to obtain more accurate approximate solutions in a more convenient manner for even more complex systems. The meshfree or meshless method is one such phenomenal development in the past decade, and is the subject of this book. There are many MFree methods proposed so far for different applications. Currently, three monographs on MFree methods have been published. Mesh Free Methods, Moving Beyond the Finite Element Method d by GR Liu (2002) provides a systematic discussion on basic theories, fundamentals for MFree methods, especially on MFree weak-form methods. It provides a comprehensive record of well-known MFree methods and the wide coverage of applications of MFree methods to problems of solids mechanics (solids, beams, plates, shells, etc.) as well as fluid mechanics. The Meshless Local Petrov-Galerkin (MLPG) Method d by Atluri and Shen (2002) provides detailed discussions of the meshfree local Petrov-Galerkin (MLPG) method and itsvariations. Formulations and applications of MLPG are well addressed in their book.
Publisher: Springer Science & Business Media
ISBN: 1402034687
Category : Technology & Engineering
Languages : en
Pages : 497
Book Description
The finite difference method (FDM) hasbeen used tosolve differential equation systems for centuries. The FDM works well for problems of simple geometry and was widely used before the invention of the much more efficient, robust finite element method (FEM). FEM is now widely used in handling problems with complex geometry. Currently, we are using and developing even more powerful numerical techniques aiming to obtain more accurate approximate solutions in a more convenient manner for even more complex systems. The meshfree or meshless method is one such phenomenal development in the past decade, and is the subject of this book. There are many MFree methods proposed so far for different applications. Currently, three monographs on MFree methods have been published. Mesh Free Methods, Moving Beyond the Finite Element Method d by GR Liu (2002) provides a systematic discussion on basic theories, fundamentals for MFree methods, especially on MFree weak-form methods. It provides a comprehensive record of well-known MFree methods and the wide coverage of applications of MFree methods to problems of solids mechanics (solids, beams, plates, shells, etc.) as well as fluid mechanics. The Meshless Local Petrov-Galerkin (MLPG) Method d by Atluri and Shen (2002) provides detailed discussions of the meshfree local Petrov-Galerkin (MLPG) method and itsvariations. Formulations and applications of MLPG are well addressed in their book.
The Meshless Local Petrov-Galerkin (MLPG) Method
Author: Satya N. Atluri
Publisher: Crest
ISBN:
Category : Mathematics
Languages : en
Pages : 448
Book Description
Publisher: Crest
ISBN:
Category : Mathematics
Languages : en
Pages : 448
Book Description
Biodental Engineering V
Author: Jorge Belinha
Publisher: CRC Press
ISBN: 0429555849
Category : Medical
Languages : en
Pages : 309
Book Description
Dentistry is a branch of medicine with its own particularities and very different fields of action, and is generally regarded as an interdisciplinary field. The use of new technologies is currently the main driving force for the series of international conferences on Biodental Engineering (BIODENTAL). BIODENTAL ENGINEERING V contains the full papers presented at the 5th International Conference on Biodental Engineering (BIODENTAL 2018, Porto, Portugal, 22-23 June 2018). The conference had two workshops, one of them dealing with computational imaging combined with finite element method, the other dealing with bone tissue remodelling models. Additionally, the conference had three special sessions and sixty contributed presentations. The topics discussed in BIODENTAL ENGINEERING V include: Aesthetics Bioengineering Biomaterials Biomechanical disorders Biomedical devices Computational bio- imaging and visualization Computational methods Dental medicine Experimental mechanics Signal processing and analysis Implantology Minimally invasive devices and techniques Orthodontics Prosthesis and orthosis Simulation Software development Telemedicine Tissue engineering Virtual reality The purpose of the series of BIODENTAL Conferences on Biodental Engineering, initiated in 2009, is to perpetuate knowledge on bioengineering applied to dentistry, by promoting a comprehensive forum for discussion on recent advances in related fields in order to identify potential collaboration between researchers and end-users from different sciences.
Publisher: CRC Press
ISBN: 0429555849
Category : Medical
Languages : en
Pages : 309
Book Description
Dentistry is a branch of medicine with its own particularities and very different fields of action, and is generally regarded as an interdisciplinary field. The use of new technologies is currently the main driving force for the series of international conferences on Biodental Engineering (BIODENTAL). BIODENTAL ENGINEERING V contains the full papers presented at the 5th International Conference on Biodental Engineering (BIODENTAL 2018, Porto, Portugal, 22-23 June 2018). The conference had two workshops, one of them dealing with computational imaging combined with finite element method, the other dealing with bone tissue remodelling models. Additionally, the conference had three special sessions and sixty contributed presentations. The topics discussed in BIODENTAL ENGINEERING V include: Aesthetics Bioengineering Biomaterials Biomechanical disorders Biomedical devices Computational bio- imaging and visualization Computational methods Dental medicine Experimental mechanics Signal processing and analysis Implantology Minimally invasive devices and techniques Orthodontics Prosthesis and orthosis Simulation Software development Telemedicine Tissue engineering Virtual reality The purpose of the series of BIODENTAL Conferences on Biodental Engineering, initiated in 2009, is to perpetuate knowledge on bioengineering applied to dentistry, by promoting a comprehensive forum for discussion on recent advances in related fields in order to identify potential collaboration between researchers and end-users from different sciences.
Composites and Their Properties
Author: Ning Hu
Publisher: BoD – Books on Demand
ISBN: 9535107119
Category : Science
Languages : en
Pages : 520
Book Description
Composites are a class of material, which receives much attention not only because it is on the cutting edge of active material research fields due to appearance of many new types of composites, e.g., nanocomposites and bio-medical composites, but also because there are a great deal of promises for their potential applications in various industries ranging from aerospace to construction due to their various outstanding properties. This book mainly deals with fabrication and property characterization of various composites by focusing on the following topics: functional and structural nanocomposites, numerical and theoretical modelling of various damages in long fiber reinforced composites and textile composites, design, processing and manufacturing technologies and their effects on mechanical properties of composites, characterization of mechanical and physical properties of various composites, and metal and ceramic matrix composites. This book has been divided into five sections to cover the above contents.
Publisher: BoD – Books on Demand
ISBN: 9535107119
Category : Science
Languages : en
Pages : 520
Book Description
Composites are a class of material, which receives much attention not only because it is on the cutting edge of active material research fields due to appearance of many new types of composites, e.g., nanocomposites and bio-medical composites, but also because there are a great deal of promises for their potential applications in various industries ranging from aerospace to construction due to their various outstanding properties. This book mainly deals with fabrication and property characterization of various composites by focusing on the following topics: functional and structural nanocomposites, numerical and theoretical modelling of various damages in long fiber reinforced composites and textile composites, design, processing and manufacturing technologies and their effects on mechanical properties of composites, characterization of mechanical and physical properties of various composites, and metal and ceramic matrix composites. This book has been divided into five sections to cover the above contents.
Meshfree Methods for Partial Differential Equations
Author: Michael Griebel
Publisher: Springer Science & Business Media
ISBN: 3642561039
Category : Mathematics
Languages : en
Pages : 468
Book Description
Meshfree methods for the solution of partial differential equations gained much attention in recent years, not only in the engineering but also in the mathematics community. One of the reasons for this development is the fact that meshfree discretizations and particle models are often better suited to cope with geometric changes of the domain of interest, e.g. free surfaces and large deformations, than classical discretization techniques such as finite differences, finite elements or finite volumes. Another obvious advantage of meshfree discretizations is their independence of a mesh so that the costs of mesh generation are eliminated. Also, the treatment of time-dependent PDEs from a Lagrangian point of view and the coupling of particle models and continuous models gained enormous interest in recent years from a theoretical as well as from a practial point of view. This volume consists of articles which address the different meshfree methods (SPH, PUM, GFEM, EFGM, RKPM etc.) and their application in applied mathematics, physics and engineering.
Publisher: Springer Science & Business Media
ISBN: 3642561039
Category : Mathematics
Languages : en
Pages : 468
Book Description
Meshfree methods for the solution of partial differential equations gained much attention in recent years, not only in the engineering but also in the mathematics community. One of the reasons for this development is the fact that meshfree discretizations and particle models are often better suited to cope with geometric changes of the domain of interest, e.g. free surfaces and large deformations, than classical discretization techniques such as finite differences, finite elements or finite volumes. Another obvious advantage of meshfree discretizations is their independence of a mesh so that the costs of mesh generation are eliminated. Also, the treatment of time-dependent PDEs from a Lagrangian point of view and the coupling of particle models and continuous models gained enormous interest in recent years from a theoretical as well as from a practial point of view. This volume consists of articles which address the different meshfree methods (SPH, PUM, GFEM, EFGM, RKPM etc.) and their application in applied mathematics, physics and engineering.
Scattered Data Approximation
Author: Holger Wendland
Publisher: Cambridge University Press
ISBN: 9781139456654
Category : Mathematics
Languages : en
Pages : 346
Book Description
Many practical applications require the reconstruction of a multivariate function from discrete, unstructured data. This book gives a self-contained, complete introduction into this subject. It concentrates on truly meshless methods such as radial basis functions, moving least squares, and partitions of unity. The book starts with an overview on typical applications of scattered data approximation, coming from surface reconstruction, fluid-structure interaction, and the numerical solution of partial differential equations. It then leads the reader from basic properties to the current state of research, addressing all important issues, such as existence, uniqueness, approximation properties, numerical stability, and efficient implementation. Each chapter ends with a section giving information on the historical background and hints for further reading. Complete proofs are included, making this perfectly suited for graduate courses on multivariate approximation and it can be used to support courses in computer-aided geometric design, and meshless methods for partial differential equations.
Publisher: Cambridge University Press
ISBN: 9781139456654
Category : Mathematics
Languages : en
Pages : 346
Book Description
Many practical applications require the reconstruction of a multivariate function from discrete, unstructured data. This book gives a self-contained, complete introduction into this subject. It concentrates on truly meshless methods such as radial basis functions, moving least squares, and partitions of unity. The book starts with an overview on typical applications of scattered data approximation, coming from surface reconstruction, fluid-structure interaction, and the numerical solution of partial differential equations. It then leads the reader from basic properties to the current state of research, addressing all important issues, such as existence, uniqueness, approximation properties, numerical stability, and efficient implementation. Each chapter ends with a section giving information on the historical background and hints for further reading. Complete proofs are included, making this perfectly suited for graduate courses on multivariate approximation and it can be used to support courses in computer-aided geometric design, and meshless methods for partial differential equations.