MEDICINAL CHEMISTRY, VOLUME 14; MOLECULAR CONNECTIVITY IN CHEMISTRY AND DRUG RESEARCH.

MEDICINAL CHEMISTRY, VOLUME 14; MOLECULAR CONNECTIVITY IN CHEMISTRY AND DRUG RESEARCH. PDF Author: LB. KIER
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

MEDICINAL CHEMISTRY, VOLUME 14; MOLECULAR CONNECTIVITY IN CHEMISTRY AND DRUG RESEARCH.

MEDICINAL CHEMISTRY, VOLUME 14; MOLECULAR CONNECTIVITY IN CHEMISTRY AND DRUG RESEARCH. PDF Author: LB. KIER
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Molecular Connectivity in Chemistry and Drug Research

Molecular Connectivity in Chemistry and Drug Research PDF Author: Lemont Kier
Publisher: Elsevier
ISBN: 0323158315
Category : Science
Languages : en
Pages : 272

Get Book Here

Book Description
Medicinal Chemistry, Volume 14: Molecular Connectivity in Chemistry and Drug Research is a 10-chapter text that focuses on the molecular connectivity approach for quantitative evaluation of molecular structure of drugs. Molecular connectivity is a nonempirical derivation of numerical value that encode within them sufficient information to relate to many physicochemical and biological properties. This book outlines first the development of molecular connectivity approach, followed by considerable chapters on its application to evaluation of physicochemical properties of drugs. Other chapters explore the application of molecular connectivity to structure-activity studies in medicinal chemistry. The final chapters provide some reflections, challenges, and potential areas of investigation of molecular connectivity. Advanced undergraduate or graduate students in medicinal chemistry or pharmacology, practicing scientists, and theoretical chemists will find this book invaluable.

Medicinal Chemistry: Molecular Connectivity In Chemistry And Drug Research

Medicinal Chemistry: Molecular Connectivity In Chemistry And Drug Research PDF Author: L.B. Kier
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Frontiers in Medicinal Chemistry

Frontiers in Medicinal Chemistry PDF Author: Atta-ur-Rahman
Publisher: Bentham Science Publishers
ISBN: 1608052087
Category : Medical
Languages : en
Pages : 466

Get Book Here

Book Description
"Frontiers in Medicinal Chemistry" is an Ebook series devoted to the review of areas of important topical interest to medicinal chemists and others in allied disciplines. "Frontiers in Medicinal Chemistry" covers all the areas of medicinal chemistry, including developments in rational drug design, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, chemoinformatics, and structure-activity relationships. Medicinal chemistry as.

Frontiers in Medicinal Chemistry , Volume (4)

Frontiers in Medicinal Chemistry , Volume (4) PDF Author: Atta-ur Rahman
Publisher: Bentham Science Publishers
ISBN: 1608052079
Category : Medical
Languages : en
Pages : 866

Get Book Here

Book Description
""Frontiers in Medicinal Chemistry" is an Ebook series devoted to the review of areas of important topical interest to medicinal chemists and others in allied disciplines. "Frontiers in Medicinal Chemistry" covers all the areas of medicinal chemistry, incl"

Medicinal Chemistry

Medicinal Chemistry PDF Author: Thomas Nogrady
Publisher: Oxford University Press
ISBN: 0198026455
Category : Medical
Languages : en
Pages : 664

Get Book Here

Book Description
Fully updated and rewritten by a basic scientist who is also a practicing physician, the third edition of this popular textbook remains comprehensive, authoritative and readable. Taking a receptor-based, target-centered approach, it presents the concepts central to the study of drug action in a logical, mechanistic way grounded on molecular and principles. Students of pharmacy, chemistry and pharmacology, as well as researchers interested in a better understanding of drug design, will find this book an invaluable resource. Starting with an overview of basic principles, Medicinal Chemistry examines the properties of drug molecules, the characteristics of drug receptors, and the nature of drug-receptor interactions. Then it systematically examines the various families of receptors involved in human disease and drug design. The first three classes of receptors are related to endogenous molecules: neurotransmitters, hormones and immunomodulators. Next, receptors associated with cellular organelles (mitochondria, cell nucleus), endogenous macromolecules (membrane proteins, cytoplasmic enzymes) and pathogens (viruses, bacteria) are examined. Through this evaluation of receptors, all the main types of human disease and all major categories of drugs are considered. There have been many changes in the third edition, including a new chapter on the immune system. Because of their increasingly prominent role in drug discovery, molecular modeling techniques, high throughput screening, neuropharmacology and genetics/genomics are given much more attention. The chapter on hormonal therapies has been thoroughly updated and re-organized. Emerging enzyme targets in drug design (e.g. kinases, caspases) are discussed, and recent information on voltage-gated and ligand-gated ion channels has been incorporated. The sections on antihypertensive, antiviral, antibacterial, anti-inflammatory, antiarrhythmic, and anticancer drugs, as well as treatments for hyperlipidemia and peptic ulcer, have been substantially expanded. One new feature will enhance the book's appeal to all readers: clinical-molecular interface sections that facilitate understanding of the treatment of human disease at a molecular level.

Current Methods In Medicinal Chemistry And Biological Physics

Current Methods In Medicinal Chemistry And Biological Physics PDF Author: Carlton A. Taft
Publisher:
ISBN: 9788130802923
Category : Biophysics
Languages : en
Pages : 247

Get Book Here

Book Description
This book is aimed at, from students to advanced researchers, for anyone that is interested or works with current experimental and theoretical methods in medicinal chemistry and biological physics, with particular interest in chemoinformatics, bioinformatics, molecular modeling, QSAR, spectrometry, molecular biology and combinatorial chemistry for many therapeutic purposes. This book attempts to convey something of the fascination of working in these multidisciplinar areas, which overlap knowledge of chemistry, physics, biochemistry, biology and pharmacology. This second volume, in particular, contains 11 chapters, of which 6 are related to theoretical methods in medicinal chemistry and at least 5 deal with experimental/mixed methods. In the modern computational medicinal chemistry, quantum mechanics (QM) plays an important role since the associated methods can describe molecular energies, bond breaking or forming, charge transfer and polarization effects. Historically in drug design, QM ligand-based applications were devoted to investigations of electronic features, and they have also been routinely used in the development of quantum descriptors in quantitative structure-activity relationships (QSAR) approaches. In chapter 1, we present an overview of the state-of-the-art of quantum methods currently used in medicinal chemistry. Molecular Dynamics (MD) simulation is a sophisticated molecular modeling technique useful to describe molecular structures and macroscopic properties in very large molecular systems comprising hundreds or even thousands of atoms. In the field of drug discovery, MD simulation has been widely used to understand the biomolecule structure, drug and biomolecule interactions. The chapter 2 outlines the theory and practical details of MD approach and focuses on its application in studies of prediction of binding affinities for putative receptor-ligand complexes. In chapter 3 we discuss the important role of the homology modeling procedure in the drug discovery process. This strategy, associated with computational power and more sophisticated and robust algorithms, has been used to predict properties, energies, conformations and support the binding modes of ligands inside their receptor sites. This approach is vital in structure-based drug design (SBBD), since it can quickly predict the tertiary structure of the target whose structure has not been experimentally solved. In drug discovery research, a massive dataset of information is involved and the high throughput screening of typically millions of compounds plays an important role. Different docking protocols can be combined in order to predict binding models and affinities of a ligand with a target receptor, selecting as example the best drug-like compound candidates to further experimental assays, leading to a reduction in the time and cost of the drug discovery process. In the chapter 4, we discuss the general basis and aspects of this approach, presenting some successful cases in drug discovery. Structure-based approaches have increasingly demonstrated their value in drug design. The impact of these technologies on early discovery and lead optimization is significant. Although there is a multiplicity of different approaches being employed in early stages of drug discovery, structure-based drug design (SBDD) is one of the most powerful techniques, and has been used quite frequently by scientists in the pharmaceutical industry as well as in academic laboratories over the past twenty years. The evolution of medicinal chemistry has resulted in an increase in the number of successful applications of structure-based approaches. Some case studies are presented in chapter 5, exploring the value of structure-based virtual screening (SBVS) approaches in drug design, highlighting the identification of novel, potent and selective receptor modulators with drug like properties. Drug discovery has moved toward more rational strategies based on our increasing understanding of the fundamental principles of protein-ligand interactions. The combination of available knowledge of several 3D protein structures with hundreds of thousands of commercially available small molecules has attracted the attention of scientists from all over the world for the application of structure-based pharmacophore strategies. Pharmacophore approaches offer timely and cost-effective ways to identify new drug-like ligands for a variety of biological targets, and their utility in drug design is unquestionable. In the chapter 6, the understanding and limitations of this approach in drug R&D are discussed. Modern molecular biology has inundated drug discovery organizations with countless potential novel drug targets. A foremost challenge for the researchers is to validate this asset of targets with bioactive small molecules (bioproducts can also be included). Eventually, they will be developed into drugs for the more promising targets. The difficulty of finding a good small-molecule starting point is at the beginning of the searching for a proper chemical space that is well related to biological space. Drugs that are small molecules and act at enzyme targets account for over 50% of all medicines in therapeutically use in the marketplace. It is for this reason that chapter 7 take thermodynamics of the small molecule-target enzyme interactions into account to a limited scope. So far, the main purpose of this chapter is to provide a guidance profile of biocalorimetry and its role in drug discovery and development. The chapter 8 intends to describe how proteomes can be analyzed and studied. It addresses some available databases and bioinformatics tools. The description of certain instrumentation, such as mass spectrometry is also presented, but not highly detailed. The aim of chapter 9 is to introduce the reader to the wide spectrum of tools currently available in the drug validation process. With the conclusion of the human genome sequencing, an increase demand for target validation follows the development of high throughput techniques used in the identification of potential new drugs. In vitro technology as the RNA interference (RNAi) and recombinant protein array together with advances on the in vivo technology as the development of transgenic animals, including here the humanized ones, will certainly improve the safety of future clinical trials processes and ultimately play an important role in the treatment of several human diseases. A therapeutically significant drug may have limited utilization in clinical practice because of various shortcomings like poor organoleptic properties (chloranphenicol), poor bioavailability (ampicilin), lack of site specificity (antineoplastic agents), incomplete absorption (epinephrine), poor aqueous solubility (corticosteroids), high first-pass metabolism (propranolol), low chemical stability (penicillin), high toxicity (thalidomide) or other adverse effects. Sometimes, an adequate pharmaceutical formulation can overcome these drawbacks, but often the galenic formulation is inoperant and a chemical modification of active molecule is necessary to correct its pharmacokinetic profile. This chemical formulation process, whose objective is to convert an interesting active molecule into a clinically acceptable drug, often involves the so-called prodrug design , which is extensively discussed in chapter 10. The dominant role of synthetic chemistry has been increasingly challenged by knowledge of the structure and functions of enzymes, receptors, channels, membrane pumps, nucleic acids and by the exponential growth of information about biology, genetics and pathology, giving paramount importance to the dialogue between chemists and biologists. Nevertheless, as in the old days, the development of new chemical entities is still highly dependent on the ability of chemists to obtain, with simple, reliable, fast and possibly inexpensive methods, the molecules that have been designed. Even if it is an undisputed fact that biology has become exceedingly important in drug research, it is reasonable to imagine that chemistry, and in particular synthetic organic chemistry, will continue to play a fundamental role in academic research and in the R&D departments of drug companies of the third millennium. In chapter 11, we describe synthetic routes that have been used to synthesize the structures of top drugs in current usage. This provides an ideal way of introducing students to a wide range of applied chemistry with brief descriptions of the modes of action of these drugs. Some contents of this book therefore reflect our own ideas and personal experiences, which are presented in reviews of different topics here investigated. It is interesting to consider the information described in this book as the starting point to access available and varied knowledge in Medicinal Chemistry and Biological Physics or related areas.

Medicinal Chemistry Advances

Medicinal Chemistry Advances PDF Author: Federico G. De Las Heras
Publisher: Elsevier
ISBN: 1483158217
Category : Medical
Languages : en
Pages : 527

Get Book Here

Book Description
Medicinal Chemistry Advances covers the proceedings of the Seventh International Symposium on Medicinal Chemistry. The book reviews the papers presented in the symposium. The main topics that this book covers are nucleosides in chemotherapy; theoretical approaches to medicinal chemistry; platelets and antithrombotic agents; receptors; antiviral agents; antilipidemic agents; respiratory system; central nervous system; enzyme inhibitors; and bioactive peptides. Chemists, pharmacologists, biochemists, physicians and other professionals and researchers concerned with the development of pharmaceutical field will find this book interesting.

NOAA Technical Memorandum ERL GLERL.

NOAA Technical Memorandum ERL GLERL. PDF Author:
Publisher:
ISBN:
Category : Environmental management
Languages : en
Pages : 564

Get Book Here

Book Description


Chemical Graph Theory

Chemical Graph Theory PDF Author: Danail Bonchev
Publisher: Taylor & Francis
ISBN: 9780856265150
Category : Design
Languages : en
Pages : 294

Get Book Here

Book Description
Building on the background of graph theory provided in the first volume of the series, presents a detailed examination of the role of graph theory in the study of chemical kinetics, reaction mechanisms, and quantitative structure-activity relations, in a manner useful to theoretical chemists. Among the topics are heterogeneous catalytic reactions, the classification and coding of chemical reaction mechanisms, the mechanist's description of chemical processes as it relates to aromaticity, and using operator networks to interpret evolutionary interrelations between chemical entities. Annotation copyright by Book News, Inc., Portland, OR