Author: Shayne C. Gad
Publisher: Springer Nature
ISBN: 3030352412
Category : Medical
Languages : en
Pages : 496
Book Description
While the safety assessment (“biocompatibility”) of medical devices has been focused on issues of local tissue tolerance (irritation, sensitization, cytotoxicity) and selected quantal effects (genotoxicity and acute lethality) since first being regulated in the late 1950s, this has changed as devices assumed a much more important role in healthcare and became more complex in both composition and in their design and operation. Add to this that devices now frequently serve as delivery systems for drugs, and that drugs may be combined with devices to improve device performance, and the problems of ensuring patient safety with devices has become significantly more complex. A part of this, requirements for ensuring safety (once based on use of previously acceptable materials – largely polymers and metals) have come to requiring determining which chemical entities are potentially released from a device into patients (and how much is released). Then an appropriate and relevant (yet also conservative) risk assessment must be performed for each identified chemical structure. The challenges inherent in meeting the current requirements are multifold, and this text seeks to identify, understand, and solve all of them. • Identify and verify the most appropriate available data. • As in most cases such data is for a different route of exposure, transform it for use in assessing exposure by the route of interest. • As the duration (and rate) of exposure to moieties released from a device are most frequently different (longer) than what available data speaks to, transformation across tissue is required. • As innate and adaptive immune responses are a central part of device/patient interaction, assessing potential risks on this basis are required. • Incorporating assessments for special populations such as neonates. • Use of (Q)SAR (Quantitative Structure Activity Relationships) modeling in assessments. • Performance and presentation of integrative assessments covering all potential biologic risks. Appendices will contain summarized available biocompatibility data for commonly used device materials (polymers and metals) and safety assessments on the frequently seen moieties in extractions from devices.
Integrated Safety and Risk Assessment for Medical Devices and Combination Products
Author: Shayne C. Gad
Publisher: Springer Nature
ISBN: 3030352412
Category : Medical
Languages : en
Pages : 496
Book Description
While the safety assessment (“biocompatibility”) of medical devices has been focused on issues of local tissue tolerance (irritation, sensitization, cytotoxicity) and selected quantal effects (genotoxicity and acute lethality) since first being regulated in the late 1950s, this has changed as devices assumed a much more important role in healthcare and became more complex in both composition and in their design and operation. Add to this that devices now frequently serve as delivery systems for drugs, and that drugs may be combined with devices to improve device performance, and the problems of ensuring patient safety with devices has become significantly more complex. A part of this, requirements for ensuring safety (once based on use of previously acceptable materials – largely polymers and metals) have come to requiring determining which chemical entities are potentially released from a device into patients (and how much is released). Then an appropriate and relevant (yet also conservative) risk assessment must be performed for each identified chemical structure. The challenges inherent in meeting the current requirements are multifold, and this text seeks to identify, understand, and solve all of them. • Identify and verify the most appropriate available data. • As in most cases such data is for a different route of exposure, transform it for use in assessing exposure by the route of interest. • As the duration (and rate) of exposure to moieties released from a device are most frequently different (longer) than what available data speaks to, transformation across tissue is required. • As innate and adaptive immune responses are a central part of device/patient interaction, assessing potential risks on this basis are required. • Incorporating assessments for special populations such as neonates. • Use of (Q)SAR (Quantitative Structure Activity Relationships) modeling in assessments. • Performance and presentation of integrative assessments covering all potential biologic risks. Appendices will contain summarized available biocompatibility data for commonly used device materials (polymers and metals) and safety assessments on the frequently seen moieties in extractions from devices.
Publisher: Springer Nature
ISBN: 3030352412
Category : Medical
Languages : en
Pages : 496
Book Description
While the safety assessment (“biocompatibility”) of medical devices has been focused on issues of local tissue tolerance (irritation, sensitization, cytotoxicity) and selected quantal effects (genotoxicity and acute lethality) since first being regulated in the late 1950s, this has changed as devices assumed a much more important role in healthcare and became more complex in both composition and in their design and operation. Add to this that devices now frequently serve as delivery systems for drugs, and that drugs may be combined with devices to improve device performance, and the problems of ensuring patient safety with devices has become significantly more complex. A part of this, requirements for ensuring safety (once based on use of previously acceptable materials – largely polymers and metals) have come to requiring determining which chemical entities are potentially released from a device into patients (and how much is released). Then an appropriate and relevant (yet also conservative) risk assessment must be performed for each identified chemical structure. The challenges inherent in meeting the current requirements are multifold, and this text seeks to identify, understand, and solve all of them. • Identify and verify the most appropriate available data. • As in most cases such data is for a different route of exposure, transform it for use in assessing exposure by the route of interest. • As the duration (and rate) of exposure to moieties released from a device are most frequently different (longer) than what available data speaks to, transformation across tissue is required. • As innate and adaptive immune responses are a central part of device/patient interaction, assessing potential risks on this basis are required. • Incorporating assessments for special populations such as neonates. • Use of (Q)SAR (Quantitative Structure Activity Relationships) modeling in assessments. • Performance and presentation of integrative assessments covering all potential biologic risks. Appendices will contain summarized available biocompatibility data for commonly used device materials (polymers and metals) and safety assessments on the frequently seen moieties in extractions from devices.
Drug Safety Evaluation
Author: Shayne Cox Gad
Publisher: John Wiley & Sons
ISBN: 1119097401
Category : Medical
Languages : en
Pages : 918
Book Description
This practical guide presents a road map for safety assessment as an integral part of the development of new drugs and therapeutics. Helps readers solve scientific, technical, and regulatory issues in preclinical safety assessment and early clinical drug development Explains scientific and philosophical bases for evaluation of specific concerns – including local tissue tolerance, target organ toxicity and carcinogenicity, developmental toxicity, immunogenicity, and immunotoxicity Covers the development of new small and large molecules, generics, 505(b)(2) route NDAs, and biosimilars Revises material to reflect new drug products (small synthetic, large proteins and cells, and tissues), harmonized global and national regulations, and new technologies for safety evaluation Adds almost 20% new and thoroughly updates existing content from the last edition
Publisher: John Wiley & Sons
ISBN: 1119097401
Category : Medical
Languages : en
Pages : 918
Book Description
This practical guide presents a road map for safety assessment as an integral part of the development of new drugs and therapeutics. Helps readers solve scientific, technical, and regulatory issues in preclinical safety assessment and early clinical drug development Explains scientific and philosophical bases for evaluation of specific concerns – including local tissue tolerance, target organ toxicity and carcinogenicity, developmental toxicity, immunogenicity, and immunotoxicity Covers the development of new small and large molecules, generics, 505(b)(2) route NDAs, and biosimilars Revises material to reflect new drug products (small synthetic, large proteins and cells, and tissues), harmonized global and national regulations, and new technologies for safety evaluation Adds almost 20% new and thoroughly updates existing content from the last edition
Registries for Evaluating Patient Outcomes
Author: Agency for Healthcare Research and Quality/AHRQ
Publisher: Government Printing Office
ISBN: 1587634333
Category : Medical
Languages : en
Pages : 385
Book Description
This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews.
Publisher: Government Printing Office
ISBN: 1587634333
Category : Medical
Languages : en
Pages : 385
Book Description
This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews.
Medical Product Safety Evaluation
Author: Jie Chen
Publisher: CRC Press
ISBN: 1351021974
Category : Mathematics
Languages : en
Pages : 372
Book Description
Medical Product Safety Evaluation: Biological Models and Statistical Methods presents cutting-edge biological models and statistical methods that are tailored to specific objectives and data types for safety analysis and benefit-risk assessment. Some frequently encountered issues and challenges in the design and analysis of safety studies are discussed with illustrative applications and examples. Medical Product Safety Evaluation: Biological Models and Statistical Methods presents cutting-edge biological models and statistical methods that are tailored to specific objectives and data types for safety analysis and benefit-risk assessment. Some frequently encountered issues and challenges in the design and analysis of safety studies are discussed with illustrative applications and examples. The book is designed not only for biopharmaceutical professionals, such as statisticians, safety specialists, pharmacovigilance experts, and pharmacoepidemiologists, who can use the book as self-learning materials or in short courses or training programs, but also for graduate students in statistics and biomedical data science for a one-semester course. Each chapter provides supplements and problems as more readings and exercises.
Publisher: CRC Press
ISBN: 1351021974
Category : Mathematics
Languages : en
Pages : 372
Book Description
Medical Product Safety Evaluation: Biological Models and Statistical Methods presents cutting-edge biological models and statistical methods that are tailored to specific objectives and data types for safety analysis and benefit-risk assessment. Some frequently encountered issues and challenges in the design and analysis of safety studies are discussed with illustrative applications and examples. Medical Product Safety Evaluation: Biological Models and Statistical Methods presents cutting-edge biological models and statistical methods that are tailored to specific objectives and data types for safety analysis and benefit-risk assessment. Some frequently encountered issues and challenges in the design and analysis of safety studies are discussed with illustrative applications and examples. The book is designed not only for biopharmaceutical professionals, such as statisticians, safety specialists, pharmacovigilance experts, and pharmacoepidemiologists, who can use the book as self-learning materials or in short courses or training programs, but also for graduate students in statistics and biomedical data science for a one-semester course. Each chapter provides supplements and problems as more readings and exercises.
Biomaterials, Medical Devices, and Combination Products
Author: Shayne Cox Gad
Publisher: CRC Press
ISBN: 1040177468
Category : Medical
Languages : en
Pages : 698
Book Description
Biomaterials, Medical Devices, and Combination Products is a single-volume guide for those responsible for-or concerned with-developing and ensuring patient safety in the use and manufacture of medical devices.The book provides a clear presentation of the global regulatory requirements and challenges in evaluating the biocompatibility and clinical
Publisher: CRC Press
ISBN: 1040177468
Category : Medical
Languages : en
Pages : 698
Book Description
Biomaterials, Medical Devices, and Combination Products is a single-volume guide for those responsible for-or concerned with-developing and ensuring patient safety in the use and manufacture of medical devices.The book provides a clear presentation of the global regulatory requirements and challenges in evaluating the biocompatibility and clinical
Biocompatibility and Performance of Medical Devices
Author: Jean-Pierre Boutrand
Publisher: Woodhead Publishing
ISBN: 0081026447
Category : Technology & Engineering
Languages : en
Pages : 592
Book Description
Biocompatibility and Performance of Medical Devices, Second Edition, provides an understanding of the biocompatibility and performance tests for ensuring that biomaterials and medical devices are safe and will perform as expected in the biological environment. Sections cover key concepts and challenges faced in relation to biocompatibility in medical devices, discuss the evaluation and characterization of biocompatibility in medical devices, describe preclinical performance studies for bone, dental and soft tissue implants, and provide information on the regulation of medical devices in the European Union, Japan and China. The book concludes with a review of histopathology principles for biocompatibility and performance studies. - Presents diverse insights from experts in government, industry and academia - Delivers a comprehensive overview of testing and interpreting medical device performance - Expanded to include new information, including sections on managing extractables, accelerating and simplifying medical device development through screening and alternative biocompatibility methods, and quality strategies which fasten device access to market
Publisher: Woodhead Publishing
ISBN: 0081026447
Category : Technology & Engineering
Languages : en
Pages : 592
Book Description
Biocompatibility and Performance of Medical Devices, Second Edition, provides an understanding of the biocompatibility and performance tests for ensuring that biomaterials and medical devices are safe and will perform as expected in the biological environment. Sections cover key concepts and challenges faced in relation to biocompatibility in medical devices, discuss the evaluation and characterization of biocompatibility in medical devices, describe preclinical performance studies for bone, dental and soft tissue implants, and provide information on the regulation of medical devices in the European Union, Japan and China. The book concludes with a review of histopathology principles for biocompatibility and performance studies. - Presents diverse insights from experts in government, industry and academia - Delivers a comprehensive overview of testing and interpreting medical device performance - Expanded to include new information, including sections on managing extractables, accelerating and simplifying medical device development through screening and alternative biocompatibility methods, and quality strategies which fasten device access to market
Medical Devices and the Public's Health
Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 0309212421
Category : Medical
Languages : en
Pages : 318
Book Description
Medical devices that are deemed to have a moderate risk to patients generally cannot go on the market until they are cleared through the FDA 510(k) process. In recent years, individuals and organizations have expressed concern that the 510(k) process is neither making safe and effective devices available to patients nor promoting innovation in the medical-device industry. Several high-profile mass-media reports and consumer-protection groups have profiled recognized or potential problems with medical devices cleared through the 510(k) clearance process. The medical-device industry and some patients have asserted that the process has become too burdensome and is delaying or stalling the entry of important new medical devices to the market. At the request of the FDA, the Institute of Medicine (IOM) examined the 510(k) process. Medical Devices and the Public's Health examines the current 510(k) clearance process and whether it optimally protects patients and promotes innovation in support of public health. It also identifies legislative, regulatory, or administrative changes that will achieve the goals of the 510(k) clearance process. Medical Devices and the Public's Health recommends that the U.S. Food and Drug Administration gather the information needed to develop a new regulatory framework to replace the 35-year-old 510(k) clearance process for medical devices. According to the report, the FDA's finite resources are best invested in developing an integrated premarket and postmarket regulatory framework.
Publisher: National Academies Press
ISBN: 0309212421
Category : Medical
Languages : en
Pages : 318
Book Description
Medical devices that are deemed to have a moderate risk to patients generally cannot go on the market until they are cleared through the FDA 510(k) process. In recent years, individuals and organizations have expressed concern that the 510(k) process is neither making safe and effective devices available to patients nor promoting innovation in the medical-device industry. Several high-profile mass-media reports and consumer-protection groups have profiled recognized or potential problems with medical devices cleared through the 510(k) clearance process. The medical-device industry and some patients have asserted that the process has become too burdensome and is delaying or stalling the entry of important new medical devices to the market. At the request of the FDA, the Institute of Medicine (IOM) examined the 510(k) process. Medical Devices and the Public's Health examines the current 510(k) clearance process and whether it optimally protects patients and promotes innovation in support of public health. It also identifies legislative, regulatory, or administrative changes that will achieve the goals of the 510(k) clearance process. Medical Devices and the Public's Health recommends that the U.S. Food and Drug Administration gather the information needed to develop a new regulatory framework to replace the 35-year-old 510(k) clearance process for medical devices. According to the report, the FDA's finite resources are best invested in developing an integrated premarket and postmarket regulatory framework.
Innovation and Protection
Author: I. Glenn Cohen
Publisher: Cambridge University Press
ISBN: 1108838634
Category : Law
Languages : en
Pages : 295
Book Description
A detailed analysis of the ethical, legal, and regulatory landscape of medical devices in the US and EU.
Publisher: Cambridge University Press
ISBN: 1108838634
Category : Law
Languages : en
Pages : 295
Book Description
A detailed analysis of the ethical, legal, and regulatory landscape of medical devices in the US and EU.
Translational Medicine
Author: Joy A. Cavagnaro
Publisher: CRC Press
ISBN: 1000471829
Category : Medical
Languages : en
Pages : 543
Book Description
Translational Medicine: Optimizing Preclinical Safety Evaluation of Biopharmaceuticals provides scientists responsible for the translation of novel biopharmaceuticals into clinical trials with a better understanding of how to navigate the obstacles that keep innovative medical research discoveries from becoming new therapies or even making it to clinical trials. The book includes sections on protein-based therapeutics, modified proteins, oligonucleotide-based therapies, monoclonal antibodies, antibody–drug conjugates, gene and cell-based therapies, gene-modified cell-based therapies, combination products, and therapeutic vaccines. Best practices are defined for efficient discovery research to facilitate a science-based, efficient, and predictive preclinical development program to ensure clinical efficacy and safety. Key Features: Defines best practices for leveraging of discovery research to facilitate a development program Includes general principles, animal models, biomarkers, preclinical toxicology testing paradigms, and practical applications Discusses rare diseases Discusses "What-Why-When-How" highlighting different considerations based upon product attributes. Includes special considerations for rare diseases About the Editors Joy A. Cavagnaro is an internationally recognized expert in preclinical development and regulatory strategy with an emphasis on genetic medicines.. Her 40-year career spans academia, government (FDA), and the CRO and biotech industries. She was awarded the 2019 Arnold J Lehman Award from the Society of Toxicology for introducing the concept of science-based, case-by-case approach to preclinical safety evaluation, which became the foundation of ICH S6. She currently serves on scientific advisory boards for advocacy groups and companies and consults and lectures in the area of preclinical development of novel therapies. Mary Ellen Cosenza is a regulatory toxicology consultant with over 30 years of senior leadership experience in the biopharmaceutical industry in the U.S., Europe, and emerging markets. She has held leadership position in both the American College of Toxicology (ACT) and the International Union of Toxicology (IUTOX) and is also an adjunct assistant professor at the University of Southern California where she teaches graduate-level courses in toxicology and regulation of biologics.
Publisher: CRC Press
ISBN: 1000471829
Category : Medical
Languages : en
Pages : 543
Book Description
Translational Medicine: Optimizing Preclinical Safety Evaluation of Biopharmaceuticals provides scientists responsible for the translation of novel biopharmaceuticals into clinical trials with a better understanding of how to navigate the obstacles that keep innovative medical research discoveries from becoming new therapies or even making it to clinical trials. The book includes sections on protein-based therapeutics, modified proteins, oligonucleotide-based therapies, monoclonal antibodies, antibody–drug conjugates, gene and cell-based therapies, gene-modified cell-based therapies, combination products, and therapeutic vaccines. Best practices are defined for efficient discovery research to facilitate a science-based, efficient, and predictive preclinical development program to ensure clinical efficacy and safety. Key Features: Defines best practices for leveraging of discovery research to facilitate a development program Includes general principles, animal models, biomarkers, preclinical toxicology testing paradigms, and practical applications Discusses rare diseases Discusses "What-Why-When-How" highlighting different considerations based upon product attributes. Includes special considerations for rare diseases About the Editors Joy A. Cavagnaro is an internationally recognized expert in preclinical development and regulatory strategy with an emphasis on genetic medicines.. Her 40-year career spans academia, government (FDA), and the CRO and biotech industries. She was awarded the 2019 Arnold J Lehman Award from the Society of Toxicology for introducing the concept of science-based, case-by-case approach to preclinical safety evaluation, which became the foundation of ICH S6. She currently serves on scientific advisory boards for advocacy groups and companies and consults and lectures in the area of preclinical development of novel therapies. Mary Ellen Cosenza is a regulatory toxicology consultant with over 30 years of senior leadership experience in the biopharmaceutical industry in the U.S., Europe, and emerging markets. She has held leadership position in both the American College of Toxicology (ACT) and the International Union of Toxicology (IUTOX) and is also an adjunct assistant professor at the University of Southern California where she teaches graduate-level courses in toxicology and regulation of biologics.
Leachables and Extractables Handbook
Author: Douglas J. Ball
Publisher: John Wiley & Sons
ISBN: 0470173653
Category : Science
Languages : en
Pages : 702
Book Description
A practical and science-based approach for addressing toxicological concerns related to leachables and extractables associated with inhalation drug products Packaging and device components of Orally Inhaled and Nasal Drug Products (OINDP) such as metered dose inhalers, dry powder inhalers, and nasal sprays pose potential safety risks from leachables and extractables, chemicals that can be released or migrate from these components into the drug product. Addressing the concepts, background, historical use, and development of safety thresholds and their utility for qualifying leachables and extractables in OINDP, the Leachables and Extractables Handbook takes a practical approach to familiarize readers with the recent recommendations for safety and risk assessment established through a joint effort of scientists from the FDA, academia, and industry. Coverage includes best practices for the chemical evaluation and management of leachables and extractables throughout the pharmaceutical product life cycle, as well as: Guidance for pharmaceutical professionals to qualify and risk-assess container closure system leachables and extractables in drug products Principles for defining toxicological safety thresholds that are applicable to OINDP and potentially applicable to other drug products Regulatory perspectives, along with an appendix of key terms and definitions, case studies, and sample protocols Analytical chemists, packaging and device engineers, formulation development scientists, component suppliers, regulatory affairs specialists, and toxicologists will all benefit from the wealth of information offered in this important text.
Publisher: John Wiley & Sons
ISBN: 0470173653
Category : Science
Languages : en
Pages : 702
Book Description
A practical and science-based approach for addressing toxicological concerns related to leachables and extractables associated with inhalation drug products Packaging and device components of Orally Inhaled and Nasal Drug Products (OINDP) such as metered dose inhalers, dry powder inhalers, and nasal sprays pose potential safety risks from leachables and extractables, chemicals that can be released or migrate from these components into the drug product. Addressing the concepts, background, historical use, and development of safety thresholds and their utility for qualifying leachables and extractables in OINDP, the Leachables and Extractables Handbook takes a practical approach to familiarize readers with the recent recommendations for safety and risk assessment established through a joint effort of scientists from the FDA, academia, and industry. Coverage includes best practices for the chemical evaluation and management of leachables and extractables throughout the pharmaceutical product life cycle, as well as: Guidance for pharmaceutical professionals to qualify and risk-assess container closure system leachables and extractables in drug products Principles for defining toxicological safety thresholds that are applicable to OINDP and potentially applicable to other drug products Regulatory perspectives, along with an appendix of key terms and definitions, case studies, and sample protocols Analytical chemists, packaging and device engineers, formulation development scientists, component suppliers, regulatory affairs specialists, and toxicologists will all benefit from the wealth of information offered in this important text.