Author: Adam A. L. Michalchuk
Publisher: Springer Nature
ISBN: 3030569667
Category : Science
Languages : en
Pages : 212
Book Description
This book uses experimental and computational methods to rationalize and predict for the first time the relative impact sensitivities of a range of energetic materials. Using knowledge of crystal structures, vibrational properties, energy-transfer mechanisms, and experimentally measured sensitivities, it describes a model that leads to excellent correlation with experimental results in all cases. As such, the book paves the way for a new, fully ab initio approach for the design of safer energetic materials based solely on knowledge of their solid-state structures. Energetic materials (explosives, propellants, gas generators, and pyrotechnics) are defined as materials that release heat and/or gaseous products at a high rate upon stimulus by heat, impact, shock, sparks, etc. They have widespread military and civilian uses, including munitions, mining, quarrying, demolition, emergency signaling, automotive safety, and space exploration. One of their most important properties is sensitivity to accidental initiation during manufacture, transport, storage, and operation, which has important implications for their safe use.
Mechanochemical Processes in Energetic Materials
Author: Adam A. L. Michalchuk
Publisher: Springer Nature
ISBN: 3030569667
Category : Science
Languages : en
Pages : 212
Book Description
This book uses experimental and computational methods to rationalize and predict for the first time the relative impact sensitivities of a range of energetic materials. Using knowledge of crystal structures, vibrational properties, energy-transfer mechanisms, and experimentally measured sensitivities, it describes a model that leads to excellent correlation with experimental results in all cases. As such, the book paves the way for a new, fully ab initio approach for the design of safer energetic materials based solely on knowledge of their solid-state structures. Energetic materials (explosives, propellants, gas generators, and pyrotechnics) are defined as materials that release heat and/or gaseous products at a high rate upon stimulus by heat, impact, shock, sparks, etc. They have widespread military and civilian uses, including munitions, mining, quarrying, demolition, emergency signaling, automotive safety, and space exploration. One of their most important properties is sensitivity to accidental initiation during manufacture, transport, storage, and operation, which has important implications for their safe use.
Publisher: Springer Nature
ISBN: 3030569667
Category : Science
Languages : en
Pages : 212
Book Description
This book uses experimental and computational methods to rationalize and predict for the first time the relative impact sensitivities of a range of energetic materials. Using knowledge of crystal structures, vibrational properties, energy-transfer mechanisms, and experimentally measured sensitivities, it describes a model that leads to excellent correlation with experimental results in all cases. As such, the book paves the way for a new, fully ab initio approach for the design of safer energetic materials based solely on knowledge of their solid-state structures. Energetic materials (explosives, propellants, gas generators, and pyrotechnics) are defined as materials that release heat and/or gaseous products at a high rate upon stimulus by heat, impact, shock, sparks, etc. They have widespread military and civilian uses, including munitions, mining, quarrying, demolition, emergency signaling, automotive safety, and space exploration. One of their most important properties is sensitivity to accidental initiation during manufacture, transport, storage, and operation, which has important implications for their safe use.
Molecular Modeling of the Sensitivities of Energetic Materials
Author: Didier Mathieu
Publisher: Elsevier
ISBN: 0128231106
Category : Science
Languages : en
Pages : 488
Book Description
Molecular Modeling of the Sensitivities of Energetic Materials, Volume 22 introduces experimental aspects, explores the relationships between sensitivity, molecular structure and crystal structure, discusses insights from numerical simulations, and highlights applications of these approaches to the design of new materials. Providing practical guidelines for implementing predictive models and their application to the search for new compounds, this book is an authoritative guide to an exciting field of research that warrants a computer-aided approach for the investigation and design of safe and powerful explosives or propellants. Much recent effort has been put into modeling sensitivities, with most work focusing on impact sensitivity and leading to a lot of experimental data in this area. Models must therefore be developed to allow evaluation of significant properties from the structure of constitutive molecules. - Highlights a range of approaches for computational simulation and the importance of combining them to accurately understand or estimate different parameters - Provides an overview of experimental findings and knowledge in a quick and accessible format - Presents guidelines to implement sensitivity models using open-source python-related software, thus supporting easy implementation of flexible models and allowing fast assessment of hypotheses
Publisher: Elsevier
ISBN: 0128231106
Category : Science
Languages : en
Pages : 488
Book Description
Molecular Modeling of the Sensitivities of Energetic Materials, Volume 22 introduces experimental aspects, explores the relationships between sensitivity, molecular structure and crystal structure, discusses insights from numerical simulations, and highlights applications of these approaches to the design of new materials. Providing practical guidelines for implementing predictive models and their application to the search for new compounds, this book is an authoritative guide to an exciting field of research that warrants a computer-aided approach for the investigation and design of safe and powerful explosives or propellants. Much recent effort has been put into modeling sensitivities, with most work focusing on impact sensitivity and leading to a lot of experimental data in this area. Models must therefore be developed to allow evaluation of significant properties from the structure of constitutive molecules. - Highlights a range of approaches for computational simulation and the importance of combining them to accurately understand or estimate different parameters - Provides an overview of experimental findings and knowledge in a quick and accessible format - Presents guidelines to implement sensitivity models using open-source python-related software, thus supporting easy implementation of flexible models and allowing fast assessment of hypotheses
Soft Mechanochemical Synthesis
Author: G.V. Avvakumov
Publisher: Springer Science & Business Media
ISBN: 0306476460
Category : Science
Languages : en
Pages : 211
Book Description
Mechanical methods of the activation of chemical processes are currently widely used for the synthesis of various compounds. The present monograph deals with the development of a novel approach to mechanochemical synthesis based on reactions of solid acids, bases, hydrated compounds, crystal hydrates, basic and acidic salts. This method has been called soft mechanochemical synthesis. The monograph includes the papers published by the present authors. They describe the results of their investigations n the last two decades. New theoretical and experimental data on kinetics and mechanism of soft mechanochemical reactions in the mixtures of compounds mentioned above to give complex oxide compounds are presented. The description of new high energetic and high efficient mills providing effective occurrence of these reactions is delivered. The possibilities of applying soft mechanochemical synthesis for materials used in catalysts, material science, electronics, etc., are discussed. The advantages of the method proposed in comparison with other methods are demonstrated. The monograph is designed for researchers, engineers and technicians engaged in chemical and ceramic industry, for scientists and students specialized in the area of development, and application of new materials.
Publisher: Springer Science & Business Media
ISBN: 0306476460
Category : Science
Languages : en
Pages : 211
Book Description
Mechanical methods of the activation of chemical processes are currently widely used for the synthesis of various compounds. The present monograph deals with the development of a novel approach to mechanochemical synthesis based on reactions of solid acids, bases, hydrated compounds, crystal hydrates, basic and acidic salts. This method has been called soft mechanochemical synthesis. The monograph includes the papers published by the present authors. They describe the results of their investigations n the last two decades. New theoretical and experimental data on kinetics and mechanism of soft mechanochemical reactions in the mixtures of compounds mentioned above to give complex oxide compounds are presented. The description of new high energetic and high efficient mills providing effective occurrence of these reactions is delivered. The possibilities of applying soft mechanochemical synthesis for materials used in catalysts, material science, electronics, etc., are discussed. The advantages of the method proposed in comparison with other methods are demonstrated. The monograph is designed for researchers, engineers and technicians engaged in chemical and ceramic industry, for scientists and students specialized in the area of development, and application of new materials.
Energy Materials Discovery
Author: Geoffrey A Ozin
Publisher: Royal Society of Chemistry
ISBN: 1839163844
Category : Science
Languages : en
Pages : 443
Book Description
Materials have the potential to be the centrepiece for the transition to viable renewable energy technologies if they realise a specific suite of properties and achieve a desired set of performance metrics. The envisioned transition involves the discovery of materials that enable generation, conversion, storage, transmission, and utilization of renewable energy. This book presents, through the eye of materials chemistry, an umbrella view of the myriad of classes of materials that make renewable energy technologies work. They are poised to facilitate the transition of non-renewable and unsustainable energy systems of the past into renewable and sustainable energy systems of the future. It is a story that often begins in chemistry laboratories with the discovery of new energy materials. Yet, to displace materials in existing energy technologies with new ones, depends not only on the ability to design and engineer a superior set of performance metrics for the material and the technology but also the requirement to meet a demanding collection of economic, regulatory, social, policy, environmental and sustainability criteria. Disruption in the traditional way of discovering materials is coming with the emergence of artificial intelligence, machine learning and robotic automation designed to accelerate the well-established discovery process, massive libraries of materials can be evaluated and the possibilities are endless. This book provides a perspective on the application of these new technologies to this field as well as an overview of energy materials discovery in the broader techno-economic and social context. Any budding researcher or more experienced materials scientist will find a guide to a fascinating story of discovery and emerge with a vision of what is next.
Publisher: Royal Society of Chemistry
ISBN: 1839163844
Category : Science
Languages : en
Pages : 443
Book Description
Materials have the potential to be the centrepiece for the transition to viable renewable energy technologies if they realise a specific suite of properties and achieve a desired set of performance metrics. The envisioned transition involves the discovery of materials that enable generation, conversion, storage, transmission, and utilization of renewable energy. This book presents, through the eye of materials chemistry, an umbrella view of the myriad of classes of materials that make renewable energy technologies work. They are poised to facilitate the transition of non-renewable and unsustainable energy systems of the past into renewable and sustainable energy systems of the future. It is a story that often begins in chemistry laboratories with the discovery of new energy materials. Yet, to displace materials in existing energy technologies with new ones, depends not only on the ability to design and engineer a superior set of performance metrics for the material and the technology but also the requirement to meet a demanding collection of economic, regulatory, social, policy, environmental and sustainability criteria. Disruption in the traditional way of discovering materials is coming with the emergence of artificial intelligence, machine learning and robotic automation designed to accelerate the well-established discovery process, massive libraries of materials can be evaluated and the possibilities are endless. This book provides a perspective on the application of these new technologies to this field as well as an overview of energy materials discovery in the broader techno-economic and social context. Any budding researcher or more experienced materials scientist will find a guide to a fascinating story of discovery and emerge with a vision of what is next.
Mechanochemistry and Emerging Technologies for Sustainable Chemical Manufacturing
Author: Evelina Colacino
Publisher: CRC Press
ISBN: 1000891623
Category : Science
Languages : en
Pages : 345
Book Description
This unique volume describes advances in the field of mechanochemistry, in particular the scaling up of mechanochemical processes. Scalable techniques employed to carry out solvent-free synthesis are evaluated. Comparability to continuous flow chemistry, the current industrial benchmark for continuous efficient chemical synthesis, is presented.The book concludes that mechanochemical synthesis can be scaled up into a continuous, sustainable process. It demonstrates that large-scale mechanochemistry can meet industrial demands, especially in the pharmaceutical industry. Features Mechanochemistry is rapidly developing as a multidisciplinary science on the borderline between chemistry, materials science and environmental science This unique text focuses on mechanochemistry with the ability to scale up and illustrates how mechanochemical synthesis is no longer an obstacle This timely book highlights recent advancements describing what can be achieved in chemical synthesis Mechanochemistry enables the synthesis of multiple polymorphic crystalline forms in the production of drugs in the form of tablets or granules in capsules
Publisher: CRC Press
ISBN: 1000891623
Category : Science
Languages : en
Pages : 345
Book Description
This unique volume describes advances in the field of mechanochemistry, in particular the scaling up of mechanochemical processes. Scalable techniques employed to carry out solvent-free synthesis are evaluated. Comparability to continuous flow chemistry, the current industrial benchmark for continuous efficient chemical synthesis, is presented.The book concludes that mechanochemical synthesis can be scaled up into a continuous, sustainable process. It demonstrates that large-scale mechanochemistry can meet industrial demands, especially in the pharmaceutical industry. Features Mechanochemistry is rapidly developing as a multidisciplinary science on the borderline between chemistry, materials science and environmental science This unique text focuses on mechanochemistry with the ability to scale up and illustrates how mechanochemical synthesis is no longer an obstacle This timely book highlights recent advancements describing what can be achieved in chemical synthesis Mechanochemistry enables the synthesis of multiple polymorphic crystalline forms in the production of drugs in the form of tablets or granules in capsules
Mechanochemistry in Nanoscience and Minerals Engineering
Author: Peter Balaz
Publisher: Springer Science & Business Media
ISBN: 3540748555
Category : Technology & Engineering
Languages : en
Pages : 422
Book Description
Mechanochemistry as a branch of solid state chemistry enquires into processes which proceed in solids due to the application of mechanical energy. This provides a thorough, up to date overview of mechanochemistry of solids and minerals. Applications of mechanochemistry in nanoscience with special impact on nanogeoscience are described. Selected advanced identification methods, most frequently applied in nanoscience, are described as well as the advantage of mechanochemical approach in minerals engineering. Examples of industrial applications are given. Mechanochemical technology is being applied in many industrial fields: powder metallurgy (synthesis of nanometals, alloys and nanocompounds), building industry (activation of cements), chemical industry (solid waste treatment, catalyst synthesis, coal ashes utilization), minerals engineering (ore enrichment, enhancement of processes of extractive metallurgy), agriculture industry (solubility increase of fertilizers), and pharmaceutical industry (improvement of solubility and bioavailability of drugs). This reference serves as an introduction to newcomers to mechanochemistry, and encourages more experienced researchers to broaden their knowledge and discover novel applications in the field.
Publisher: Springer Science & Business Media
ISBN: 3540748555
Category : Technology & Engineering
Languages : en
Pages : 422
Book Description
Mechanochemistry as a branch of solid state chemistry enquires into processes which proceed in solids due to the application of mechanical energy. This provides a thorough, up to date overview of mechanochemistry of solids and minerals. Applications of mechanochemistry in nanoscience with special impact on nanogeoscience are described. Selected advanced identification methods, most frequently applied in nanoscience, are described as well as the advantage of mechanochemical approach in minerals engineering. Examples of industrial applications are given. Mechanochemical technology is being applied in many industrial fields: powder metallurgy (synthesis of nanometals, alloys and nanocompounds), building industry (activation of cements), chemical industry (solid waste treatment, catalyst synthesis, coal ashes utilization), minerals engineering (ore enrichment, enhancement of processes of extractive metallurgy), agriculture industry (solubility increase of fertilizers), and pharmaceutical industry (improvement of solubility and bioavailability of drugs). This reference serves as an introduction to newcomers to mechanochemistry, and encourages more experienced researchers to broaden their knowledge and discover novel applications in the field.
Polymer Mechanochemistry
Author: Roman Boulatov
Publisher: Springer
ISBN: 3319228250
Category : Technology & Engineering
Languages : en
Pages : 443
Book Description
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.
Publisher: Springer
ISBN: 3319228250
Category : Technology & Engineering
Languages : en
Pages : 443
Book Description
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.
Multifunctional Energetic Materials
Author: N. N. Thadhani
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 280
Book Description
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 280
Book Description
Nontraditional Activation Methods in Green and Sustainable Applications
Author: Bela Torok
Publisher: Elsevier
ISBN: 0128190159
Category : Science
Languages : en
Pages : 606
Book Description
Nontraditional Activation Methods in Green and Sustainable Applications: Microwaves; Ultrasounds; Photo-, Electro- and Mechan-ochemistry and High Hydrostatic Pressure provides a broad overview of non-traditional activation methods to help readers identify and use appropriate approaches in reducing the environmental impact of their work. Sections discuss the fundamental principles of each method and provide examples of their practical use, illustrating their usefulness. Given the importance of expanding laboratory based technologies to the industrial level, chapters that cover both existing and potential industrial and environmental applications are also included. Highlighting the usefulness and adaptability of these methods for a range of practical applications, this book is a practical guide for both those involved with the design and application of synthetic methodologies and those interested in the implementation and impact of green chemistry principles in practice, from synthetic and medicinal chemists, to food developers and environmental policy planners. Discusses, and critically assesses, the advantages of non-traditional activation methods in green and sustainable chemistry applications Features individual chapters written by renowned experts in the field Contains extensive, state-of-the-art reference sections, providing critically filtered information to readers
Publisher: Elsevier
ISBN: 0128190159
Category : Science
Languages : en
Pages : 606
Book Description
Nontraditional Activation Methods in Green and Sustainable Applications: Microwaves; Ultrasounds; Photo-, Electro- and Mechan-ochemistry and High Hydrostatic Pressure provides a broad overview of non-traditional activation methods to help readers identify and use appropriate approaches in reducing the environmental impact of their work. Sections discuss the fundamental principles of each method and provide examples of their practical use, illustrating their usefulness. Given the importance of expanding laboratory based technologies to the industrial level, chapters that cover both existing and potential industrial and environmental applications are also included. Highlighting the usefulness and adaptability of these methods for a range of practical applications, this book is a practical guide for both those involved with the design and application of synthetic methodologies and those interested in the implementation and impact of green chemistry principles in practice, from synthetic and medicinal chemists, to food developers and environmental policy planners. Discusses, and critically assesses, the advantages of non-traditional activation methods in green and sustainable chemistry applications Features individual chapters written by renowned experts in the field Contains extensive, state-of-the-art reference sections, providing critically filtered information to readers
Innovative Energetic Materials: Properties, Combustion Performance and Application
Author: WeiQiang Pang
Publisher: Springer Nature
ISBN: 9811548315
Category : Technology & Engineering
Languages : en
Pages : 556
Book Description
This book focuses on the combustion performance and application of innovative energetic materials for solid and hybrid space rocket propulsion. It provides a comprehensive overview of advanced technologies in the field of innovative energetic materials and combustion performance, introduces methods of modeling and diagnosing the aggregation/agglomeration of active energetic metal materials in solid propellants, and investigates the potential applications of innovative energetic materials in solid and hybrid propulsion. In addition, it also provides step-by-step solutions for sample problems to help readers gain a good understanding of combustion performance and potential applications of innovative energetic materials in space propulsion. This book serves as an excellent resource for researchers and engineers in the field of propellants, explosives, and pyrotechnics.
Publisher: Springer Nature
ISBN: 9811548315
Category : Technology & Engineering
Languages : en
Pages : 556
Book Description
This book focuses on the combustion performance and application of innovative energetic materials for solid and hybrid space rocket propulsion. It provides a comprehensive overview of advanced technologies in the field of innovative energetic materials and combustion performance, introduces methods of modeling and diagnosing the aggregation/agglomeration of active energetic metal materials in solid propellants, and investigates the potential applications of innovative energetic materials in solid and hybrid propulsion. In addition, it also provides step-by-step solutions for sample problems to help readers gain a good understanding of combustion performance and potential applications of innovative energetic materials in space propulsion. This book serves as an excellent resource for researchers and engineers in the field of propellants, explosives, and pyrotechnics.