Author: Hideko Koshima
Publisher: John Wiley & Sons
ISBN: 3527346201
Category : Technology & Engineering
Languages : en
Pages : 442
Book Description
Offers a comprehensive review of the research and development of mechanically responsive materials and their applications in soft robots Mechanically Responsive Materials for Soft Robotics offers an authoritative guide to the current state of mechanically responsive materials for the development of soft robotics. With contributions from an international panel of experts, the book examines existing mechanically responsive materials such as crystals, polymers, gels, and composites that are stimulated by light and heat. The book also explores the application of mechanical materials to soft robotics. The authors describe the many excellent mechanical crystals developed in recent years that show the ability to bend, twist, rotate, jump, self-heal, and shape memory. Mechanical polymer materials are described for evolution into artificial muscles, photomobile materials, bioinspired soft actuators, inorganic-organic hybrid materials, multi-responsive composite materials, and strain sensor materials. The application of mechanical materials to soft robots is just the beginning. This book reviews the many challenging and versatile applications, such as soft microrobots made from photoresponsive elastomers, four-dimensional printing for assembling soft robots, self-growing of soft robots like plants, and biohybrid robots using muscle tissue. This important book: -Explores recent developments in the use of soft smart materials in robotic systems -Covers the full scope of mechanically responsive materials: polymers, crystals, gels, and nanocomposites -Deals with an interdisciplinary topic of advanced smart materials research -Contains extensive descriptions of current and future applications in soft robotics Written for materials scientists, polymer chemists, photochemists, physical chemists, solid state chemists, inorganic chemists, and robotics engineers, Mechanically Responsive Materials for Soft Robotics offers a comprehensive and timely review of the most recent research on mechanically responsive materials and the manufacture of soft robotics.
Mechanically Responsive Materials for Soft Robotics
Author: Hideko Koshima
Publisher: John Wiley & Sons
ISBN: 3527346201
Category : Technology & Engineering
Languages : en
Pages : 442
Book Description
Offers a comprehensive review of the research and development of mechanically responsive materials and their applications in soft robots Mechanically Responsive Materials for Soft Robotics offers an authoritative guide to the current state of mechanically responsive materials for the development of soft robotics. With contributions from an international panel of experts, the book examines existing mechanically responsive materials such as crystals, polymers, gels, and composites that are stimulated by light and heat. The book also explores the application of mechanical materials to soft robotics. The authors describe the many excellent mechanical crystals developed in recent years that show the ability to bend, twist, rotate, jump, self-heal, and shape memory. Mechanical polymer materials are described for evolution into artificial muscles, photomobile materials, bioinspired soft actuators, inorganic-organic hybrid materials, multi-responsive composite materials, and strain sensor materials. The application of mechanical materials to soft robots is just the beginning. This book reviews the many challenging and versatile applications, such as soft microrobots made from photoresponsive elastomers, four-dimensional printing for assembling soft robots, self-growing of soft robots like plants, and biohybrid robots using muscle tissue. This important book: -Explores recent developments in the use of soft smart materials in robotic systems -Covers the full scope of mechanically responsive materials: polymers, crystals, gels, and nanocomposites -Deals with an interdisciplinary topic of advanced smart materials research -Contains extensive descriptions of current and future applications in soft robotics Written for materials scientists, polymer chemists, photochemists, physical chemists, solid state chemists, inorganic chemists, and robotics engineers, Mechanically Responsive Materials for Soft Robotics offers a comprehensive and timely review of the most recent research on mechanically responsive materials and the manufacture of soft robotics.
Publisher: John Wiley & Sons
ISBN: 3527346201
Category : Technology & Engineering
Languages : en
Pages : 442
Book Description
Offers a comprehensive review of the research and development of mechanically responsive materials and their applications in soft robots Mechanically Responsive Materials for Soft Robotics offers an authoritative guide to the current state of mechanically responsive materials for the development of soft robotics. With contributions from an international panel of experts, the book examines existing mechanically responsive materials such as crystals, polymers, gels, and composites that are stimulated by light and heat. The book also explores the application of mechanical materials to soft robotics. The authors describe the many excellent mechanical crystals developed in recent years that show the ability to bend, twist, rotate, jump, self-heal, and shape memory. Mechanical polymer materials are described for evolution into artificial muscles, photomobile materials, bioinspired soft actuators, inorganic-organic hybrid materials, multi-responsive composite materials, and strain sensor materials. The application of mechanical materials to soft robots is just the beginning. This book reviews the many challenging and versatile applications, such as soft microrobots made from photoresponsive elastomers, four-dimensional printing for assembling soft robots, self-growing of soft robots like plants, and biohybrid robots using muscle tissue. This important book: -Explores recent developments in the use of soft smart materials in robotic systems -Covers the full scope of mechanically responsive materials: polymers, crystals, gels, and nanocomposites -Deals with an interdisciplinary topic of advanced smart materials research -Contains extensive descriptions of current and future applications in soft robotics Written for materials scientists, polymer chemists, photochemists, physical chemists, solid state chemists, inorganic chemists, and robotics engineers, Mechanically Responsive Materials for Soft Robotics offers a comprehensive and timely review of the most recent research on mechanically responsive materials and the manufacture of soft robotics.
Bioinspired Sensing, Actuation, and Control in Underwater Soft Robotic Systems
Author: Derek A. Paley
Publisher: Springer Nature
ISBN: 303050476X
Category : Technology & Engineering
Languages : en
Pages : 300
Book Description
This book includes representative research from the state‐of‐the‐art in the emerging field of soft robotics, with a special focus on bioinspired soft robotics for underwater applications. Topics include novel materials, sensors, actuators, and system design for distributed estimation and control of soft robotic appendages inspired by the octopus and seastar. It summarizes the latest findings in an emerging field of bioinspired soft robotics for the underwater domain, primarily drawing from (but not limited to) an ongoing research program in bioinspired autonomous systems sponsored by the Office of Naval Research. The program has stimulated cross‐disciplinary research in biology, material science, computational mechanics, and systems and control for the purpose of creating novel robotic appendages for maritime applications. The book collects recent results in this area.
Publisher: Springer Nature
ISBN: 303050476X
Category : Technology & Engineering
Languages : en
Pages : 300
Book Description
This book includes representative research from the state‐of‐the‐art in the emerging field of soft robotics, with a special focus on bioinspired soft robotics for underwater applications. Topics include novel materials, sensors, actuators, and system design for distributed estimation and control of soft robotic appendages inspired by the octopus and seastar. It summarizes the latest findings in an emerging field of bioinspired soft robotics for the underwater domain, primarily drawing from (but not limited to) an ongoing research program in bioinspired autonomous systems sponsored by the Office of Naval Research. The program has stimulated cross‐disciplinary research in biology, material science, computational mechanics, and systems and control for the purpose of creating novel robotic appendages for maritime applications. The book collects recent results in this area.
Electroactive Polymers for Robotic Applications
Author: Kwang J. Kim
Publisher: Springer Science & Business Media
ISBN: 1846283728
Category : Technology & Engineering
Languages : en
Pages : 288
Book Description
This book covers the fundamental properties, modeling, and demonstration of Electroactive polymers in robotic applications. It particularly details artificial muscles and sensors. In addition, the book discusses the properties and uses in robotics applications of ionic polymer–metal composite actuators and dielectric elastomers.
Publisher: Springer Science & Business Media
ISBN: 1846283728
Category : Technology & Engineering
Languages : en
Pages : 288
Book Description
This book covers the fundamental properties, modeling, and demonstration of Electroactive polymers in robotic applications. It particularly details artificial muscles and sensors. In addition, the book discusses the properties and uses in robotics applications of ionic polymer–metal composite actuators and dielectric elastomers.
Soft Actuators
Author: Kinji Asaka
Publisher: Springer Nature
ISBN: 9811368503
Category : Technology & Engineering
Languages : en
Pages : 722
Book Description
This book is the second edition of Soft Actuators, originally published in 2014, with 12 chapters added to the first edition. The subject of this new edition is current comprehensive research and development of soft actuators, covering interdisciplinary study of materials science, mechanics, electronics, robotics, and bioscience. The book includes contemporary research of actuators based on biomaterials for their potential in future artificial muscle technology. Readers will find detailed and useful information about materials, methods of synthesis, fabrication, and measurements to study soft actuators. Additionally, the topics of materials, modeling, and applications not only promote the further research and development of soft actuators, but bring benefits for utilization and industrialization. This volume makes generous use of color figures, diagrams, and photographs that provide easy-to-understand descriptions of the mechanisms, apparatus, and motions of soft actuators. Also, in this second edition the chapters on modeling, materials design, and device design have been given a wider scope and made easier to comprehend, which will be helpful in practical applications of soft actuators. Readers of this work can acquire the newest technology and information about basic science and practical applications of flexible, lightweight, and noiseless soft actuators, which differ from conventional mechanical engines and electric motors. This new edition of Soft Actuators will inspire readers with fresh ideas and encourage their research and development, thus opening up a new field of applications for the utilization and industrialization of soft actuators.
Publisher: Springer Nature
ISBN: 9811368503
Category : Technology & Engineering
Languages : en
Pages : 722
Book Description
This book is the second edition of Soft Actuators, originally published in 2014, with 12 chapters added to the first edition. The subject of this new edition is current comprehensive research and development of soft actuators, covering interdisciplinary study of materials science, mechanics, electronics, robotics, and bioscience. The book includes contemporary research of actuators based on biomaterials for their potential in future artificial muscle technology. Readers will find detailed and useful information about materials, methods of synthesis, fabrication, and measurements to study soft actuators. Additionally, the topics of materials, modeling, and applications not only promote the further research and development of soft actuators, but bring benefits for utilization and industrialization. This volume makes generous use of color figures, diagrams, and photographs that provide easy-to-understand descriptions of the mechanisms, apparatus, and motions of soft actuators. Also, in this second edition the chapters on modeling, materials design, and device design have been given a wider scope and made easier to comprehend, which will be helpful in practical applications of soft actuators. Readers of this work can acquire the newest technology and information about basic science and practical applications of flexible, lightweight, and noiseless soft actuators, which differ from conventional mechanical engines and electric motors. This new edition of Soft Actuators will inspire readers with fresh ideas and encourage their research and development, thus opening up a new field of applications for the utilization and industrialization of soft actuators.
Polymer Mechanochemistry
Author: Roman Boulatov
Publisher: Springer
ISBN: 3319228250
Category : Technology & Engineering
Languages : en
Pages : 443
Book Description
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.
Publisher: Springer
ISBN: 3319228250
Category : Technology & Engineering
Languages : en
Pages : 443
Book Description
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.
Resilient Hybrid Electronics for Extreme/Harsh Environments
Author: Amanda Schrand
Publisher: CRC Press
ISBN: 1003857183
Category : Technology & Engineering
Languages : en
Pages : 187
Book Description
The success of future innovative technology relies upon a community with a shared vision. Here, we present an overview of the latest technological progress in the field of printed electronics for use in harsh or extreme environments. Each chapter unlocksscientific and engineering discoveries that will undoubtedly lead to progression from proof of concept to device creation. The main topics covered in this book include some of the most promising materials, methods, and the ability to integrate printed materials with commercial components to provide the basis for the next generation of electronics that are dubbed “survivable” in environments with high g‐orces, corrosion, vibration, and large temperature fluctuations. A wide variety of materials are discussed that contribute to robust hybrid electronics, including printable conductive composite inks, ceramics and ceramic matrix composites, polymer‐erived ceramics, thin metal films, elastomers, solders and epoxies, to name a few. Collectively, these materials and associated components are used to construct conductive traces, interconnects, antennas, pressure sensors, temperature sensors, power inducting devices, strain sensors and gauges, soft actuators, supercapacitors, piezo ionic elements, resistors, waveguides, filters, electrodes, batteries, various detectors, monitoring devices, transducers, and RF systems and graded dielectric, or graded index (GRIN) structures. New designs that incorporate the electronics as embedded materials into channels, slots and other methods to protect the electronics from the extreme elements of the operational environment are also envisioned to increase their survivability while remaining cognizant of the required frequency of replacement, reapplication and integration of power sources. Lastly, the ability of printer manufacturers, software providers and users to work together to build multi‐axis, multi‐material and commercial‐off‐the‐shelf (COTS) integration into user‐friendly systems will be a great advancement for the field of printed electronics. Therefore, the blueprint for manufacturing resilient hybrid electronics consists of novel designs that exploit the benefits of advances in additive manufacturing that are then efficiently paired with commercially available components to produce devices that exceed known constraints. As a primary example, metals can be deposited onto polymers in a variety of ways, including aerosol jetting, microdispensing, electroplating, sintering, vacuum deposition, supersonic beam cluster deposition, and plasma‐based techniques, to name a few. Taking these scientific discoveries and creatively combining them into robotic, multi‐material factories of the future could be one shared aim of the printed electronics community toward survivable device creation.
Publisher: CRC Press
ISBN: 1003857183
Category : Technology & Engineering
Languages : en
Pages : 187
Book Description
The success of future innovative technology relies upon a community with a shared vision. Here, we present an overview of the latest technological progress in the field of printed electronics for use in harsh or extreme environments. Each chapter unlocksscientific and engineering discoveries that will undoubtedly lead to progression from proof of concept to device creation. The main topics covered in this book include some of the most promising materials, methods, and the ability to integrate printed materials with commercial components to provide the basis for the next generation of electronics that are dubbed “survivable” in environments with high g‐orces, corrosion, vibration, and large temperature fluctuations. A wide variety of materials are discussed that contribute to robust hybrid electronics, including printable conductive composite inks, ceramics and ceramic matrix composites, polymer‐erived ceramics, thin metal films, elastomers, solders and epoxies, to name a few. Collectively, these materials and associated components are used to construct conductive traces, interconnects, antennas, pressure sensors, temperature sensors, power inducting devices, strain sensors and gauges, soft actuators, supercapacitors, piezo ionic elements, resistors, waveguides, filters, electrodes, batteries, various detectors, monitoring devices, transducers, and RF systems and graded dielectric, or graded index (GRIN) structures. New designs that incorporate the electronics as embedded materials into channels, slots and other methods to protect the electronics from the extreme elements of the operational environment are also envisioned to increase their survivability while remaining cognizant of the required frequency of replacement, reapplication and integration of power sources. Lastly, the ability of printer manufacturers, software providers and users to work together to build multi‐axis, multi‐material and commercial‐off‐the‐shelf (COTS) integration into user‐friendly systems will be a great advancement for the field of printed electronics. Therefore, the blueprint for manufacturing resilient hybrid electronics consists of novel designs that exploit the benefits of advances in additive manufacturing that are then efficiently paired with commercially available components to produce devices that exceed known constraints. As a primary example, metals can be deposited onto polymers in a variety of ways, including aerosol jetting, microdispensing, electroplating, sintering, vacuum deposition, supersonic beam cluster deposition, and plasma‐based techniques, to name a few. Taking these scientific discoveries and creatively combining them into robotic, multi‐material factories of the future could be one shared aim of the printed electronics community toward survivable device creation.
Laser-induced Graphene
Author: Ruquan Ye
Publisher:
ISBN: 9789814877275
Category : Graphene
Languages : en
Pages : 88
Book Description
LIG is a revolutionary technique that uses a common CO2 infrared laser scriber, like the one used in any machine shop, for the direct conversion of polymers into porous graphene under ambient conditions. This technique combines the preparation and patterning of 3D graphene in a single step, without the use of wet chemicals. The ease in the structural engineering and excellent mechanical properties of the 3D graphene obtained have made LIG a versatile technique for applications across many fields. This book compiles cutting-edge research on LIG by different research groups all over the world. It discusses the strategies that have been developed to synthesize and engineer graphene, including controlling its properties such as porosity, composition, and surface characteristics. The authors are pioneers in the discovery and development of LIG and the book will appeal to anyone involved in nanotechnology, chemistry, environmental sciences, and device development, especially those with an interest in the synthesis and applications of graphene-based materials.
Publisher:
ISBN: 9789814877275
Category : Graphene
Languages : en
Pages : 88
Book Description
LIG is a revolutionary technique that uses a common CO2 infrared laser scriber, like the one used in any machine shop, for the direct conversion of polymers into porous graphene under ambient conditions. This technique combines the preparation and patterning of 3D graphene in a single step, without the use of wet chemicals. The ease in the structural engineering and excellent mechanical properties of the 3D graphene obtained have made LIG a versatile technique for applications across many fields. This book compiles cutting-edge research on LIG by different research groups all over the world. It discusses the strategies that have been developed to synthesize and engineer graphene, including controlling its properties such as porosity, composition, and surface characteristics. The authors are pioneers in the discovery and development of LIG and the book will appeal to anyone involved in nanotechnology, chemistry, environmental sciences, and device development, especially those with an interest in the synthesis and applications of graphene-based materials.
Polyurethane Elastomers
Author: Cristina Prisacariu
Publisher: Springer Science & Business Media
ISBN: 3709105145
Category : Technology & Engineering
Languages : en
Pages : 276
Book Description
A comprehensive account of the physical / mechanical behaviour of polyurethanes (PU ́s) elastomers, films and blends of variable crystallinity. Aspects covered include the elasticity and inelasticity of amorphous to crystalline PUs, in relation to their sensitivity to chemical and physical structure. A study is made of how aspects of the constitutive responses of PUs vary with composition: the polyaddition procedure, the hard segment, soft segment and chain extender (diols and diamines) are varied systematically in a large number of systems of model and novel crosslinked andthermoplastic PUs. Results will be related to: microstructural changes, on the basis of evidence from x-ray scattering (SAXS and WAXS), and also dynamic mechanical analyses (DMA), differential scanning calorimetry (DSC) and IR dichroism. Inelastic effects will be investigated also by including quantitative correlations between the magnitude of the Mullins effect and the fractional energy dissipation by hysteresis under cyclic straining, giving common relations approached by all the materials studied. A major structural feature explored is the relationship between the nature of the hard segment (crystallising or not) and that of the soft segments. Crystallinity has been sometimes observed in the commercial PUs hard phase but this is usually limited to only a few percent for most hard segment structures when solidified from the melt. One particular diisocyanate, 4,4’-dibenzyl diisocyanate (DBDI) that, in the presence of suitable chain extenders ( diols or diamines), gives rise to significant degrees of crystallinity [i-iii] and this is included in the present work. Understanding the reaction pathways involved, in resolving the subtle morphological evolution at the nanometre level, and capturing mathematically the complex, large-deformation nonlinear viscoelastic mechanical behaviour are assumed to bring new important insights in the world basic research in polyurethanes and towards applied industrial research in this area.
Publisher: Springer Science & Business Media
ISBN: 3709105145
Category : Technology & Engineering
Languages : en
Pages : 276
Book Description
A comprehensive account of the physical / mechanical behaviour of polyurethanes (PU ́s) elastomers, films and blends of variable crystallinity. Aspects covered include the elasticity and inelasticity of amorphous to crystalline PUs, in relation to their sensitivity to chemical and physical structure. A study is made of how aspects of the constitutive responses of PUs vary with composition: the polyaddition procedure, the hard segment, soft segment and chain extender (diols and diamines) are varied systematically in a large number of systems of model and novel crosslinked andthermoplastic PUs. Results will be related to: microstructural changes, on the basis of evidence from x-ray scattering (SAXS and WAXS), and also dynamic mechanical analyses (DMA), differential scanning calorimetry (DSC) and IR dichroism. Inelastic effects will be investigated also by including quantitative correlations between the magnitude of the Mullins effect and the fractional energy dissipation by hysteresis under cyclic straining, giving common relations approached by all the materials studied. A major structural feature explored is the relationship between the nature of the hard segment (crystallising or not) and that of the soft segments. Crystallinity has been sometimes observed in the commercial PUs hard phase but this is usually limited to only a few percent for most hard segment structures when solidified from the melt. One particular diisocyanate, 4,4’-dibenzyl diisocyanate (DBDI) that, in the presence of suitable chain extenders ( diols or diamines), gives rise to significant degrees of crystallinity [i-iii] and this is included in the present work. Understanding the reaction pathways involved, in resolving the subtle morphological evolution at the nanometre level, and capturing mathematically the complex, large-deformation nonlinear viscoelastic mechanical behaviour are assumed to bring new important insights in the world basic research in polyurethanes and towards applied industrial research in this area.
Generation GrowBots: Materials, Mechanisms, and Biomimetic Design for Growing Robots
Author: Barbara Mazzolai
Publisher: Frontiers Media SA
ISBN: 2889711854
Category : Technology & Engineering
Languages : en
Pages : 139
Book Description
Publisher: Frontiers Media SA
ISBN: 2889711854
Category : Technology & Engineering
Languages : en
Pages : 139
Book Description
Shape Memory Alloys - New Advances
Author: Mohammad Asaduzzaman Chowdhury
Publisher: BoD – Books on Demand
ISBN: 1837697272
Category : Technology & Engineering
Languages : en
Pages : 96
Book Description
Shape Memory Alloys - New Advances is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of shape memory alloys. It provides a thorough overview of the latest research efforts by international authors on shape memory alloys and opens new possible research paths for further novel developments.
Publisher: BoD – Books on Demand
ISBN: 1837697272
Category : Technology & Engineering
Languages : en
Pages : 96
Book Description
Shape Memory Alloys - New Advances is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of shape memory alloys. It provides a thorough overview of the latest research efforts by international authors on shape memory alloys and opens new possible research paths for further novel developments.