Author: Swee Hin Teoh
Publisher: World Scientific
ISBN: 9812560610
Category : Medical
Languages : en
Pages : 347
Book Description
The success of any implant or medical device depends very much on the biomaterial used. Synthetic materials (such as metals, polymers and composites) have made significant contributions to many established medical devices. The aim of this book is to provide a basic understanding on the engineering and processing aspects of biomaterials used in medical applications. Of paramount importance is the tripartite relationship between material properties, processing methods and design. As the target audiences cover a wide interdisciplinary field, each chapter is written with a detailed background so that audience of another discipline will be able to understand. For the more knowledgeable reader, a detailed list of references is included.
Engineering Materials for Biomedical Applications
Author: Swee Hin Teoh
Publisher: World Scientific
ISBN: 9812560610
Category : Medical
Languages : en
Pages : 347
Book Description
The success of any implant or medical device depends very much on the biomaterial used. Synthetic materials (such as metals, polymers and composites) have made significant contributions to many established medical devices. The aim of this book is to provide a basic understanding on the engineering and processing aspects of biomaterials used in medical applications. Of paramount importance is the tripartite relationship between material properties, processing methods and design. As the target audiences cover a wide interdisciplinary field, each chapter is written with a detailed background so that audience of another discipline will be able to understand. For the more knowledgeable reader, a detailed list of references is included.
Publisher: World Scientific
ISBN: 9812560610
Category : Medical
Languages : en
Pages : 347
Book Description
The success of any implant or medical device depends very much on the biomaterial used. Synthetic materials (such as metals, polymers and composites) have made significant contributions to many established medical devices. The aim of this book is to provide a basic understanding on the engineering and processing aspects of biomaterials used in medical applications. Of paramount importance is the tripartite relationship between material properties, processing methods and design. As the target audiences cover a wide interdisciplinary field, each chapter is written with a detailed background so that audience of another discipline will be able to understand. For the more knowledgeable reader, a detailed list of references is included.
Mechanical Engineering in Biomedical Application
Author: Jay Prakash Srivastava
Publisher: John Wiley & Sons
ISBN: 1394174527
Category : Mathematics
Languages : en
Pages : 452
Book Description
MECHANICAL ENGINEERING IN BIOMEDICAL APPLICATIONS The book explores the latest research and developments related to the interdisciplinary field of biomedical and mechanical engineering offering insights and perspectives on the research, key technologies, and mechanical engineering techniques used in biomedical applications. The book is divided into several sections that cover different aspects of mechanical engineering in biomedical research. The first section focuses on the role of additive manufacturing technologies, rehabilitation in healthcare applications, and artificial recreation of human organs. The section also covers the advances, risks, and challenges of bio 3D printing. The second section presents insight into biomaterials, including their properties, applications, and fabrication techniques. The section also covers the use of powder metallurgy methodology and techniques of biopolymer and bio-ceramic coatings on prosthetic implants. The third section covers biofluid mechanics, including the mechanics of fluid flow within our body, the mechanical aspects of human synovial fluids, and the design of medical devices for fluid flow applications. The section also covers the use of computational modeling to study the blockage of carotid arteries. The final section elaborates on soft robotic manipulation for use in medical sciences. Audience The book provides practical insights and applications for mechanical engineers, biomedical engineers, medical professionals, and researchers working on the design and development of biomedical devices and implants.
Publisher: John Wiley & Sons
ISBN: 1394174527
Category : Mathematics
Languages : en
Pages : 452
Book Description
MECHANICAL ENGINEERING IN BIOMEDICAL APPLICATIONS The book explores the latest research and developments related to the interdisciplinary field of biomedical and mechanical engineering offering insights and perspectives on the research, key technologies, and mechanical engineering techniques used in biomedical applications. The book is divided into several sections that cover different aspects of mechanical engineering in biomedical research. The first section focuses on the role of additive manufacturing technologies, rehabilitation in healthcare applications, and artificial recreation of human organs. The section also covers the advances, risks, and challenges of bio 3D printing. The second section presents insight into biomaterials, including their properties, applications, and fabrication techniques. The section also covers the use of powder metallurgy methodology and techniques of biopolymer and bio-ceramic coatings on prosthetic implants. The third section covers biofluid mechanics, including the mechanics of fluid flow within our body, the mechanical aspects of human synovial fluids, and the design of medical devices for fluid flow applications. The section also covers the use of computational modeling to study the blockage of carotid arteries. The final section elaborates on soft robotic manipulation for use in medical sciences. Audience The book provides practical insights and applications for mechanical engineers, biomedical engineers, medical professionals, and researchers working on the design and development of biomedical devices and implants.
Mechatronics in Medicine A Biomedical Engineering Approach
Author: Siamak Najarian
Publisher: McGraw Hill Professional
ISBN: 0071768971
Category : Technology & Engineering
Languages : en
Pages : 213
Book Description
Cutting-edge coverage of mechatronics in medical systems Mechatronics in Medicine: A Biomedical Engineering Approach describes novel solutions for utilizing mechatronics to design innovative, accurate, and intelligent medical devices and optimize conventional medical instruments. After an introduction to mechatronics, the book addresses sensing technologies, actuators and feedback sensors, mechanisms and mechanical devices, and processing and control systems. Artificial intelligence, expert systems, and medical imaging are also covered. This pioneering guide concludes by discussing applications of mechatronics in medicine and biomedical engineering and presenting seven real-world medical case studies. In-depth details on: Sensing technology Electromechanical, fluid, pneumatic power, and other types of actuators Feedback sensors Mechanisms, mechanical devices, and their functions Principles and methods of processing and controlling mechatronics systems Artificial intelligence, expert systems, artificial neural networks, fuzzy systems, and neuro fuzzy systems Medical imaging, including ultrasound, MRI, CT scan, and nuclear imaging Medical case studies in mechatronics
Publisher: McGraw Hill Professional
ISBN: 0071768971
Category : Technology & Engineering
Languages : en
Pages : 213
Book Description
Cutting-edge coverage of mechatronics in medical systems Mechatronics in Medicine: A Biomedical Engineering Approach describes novel solutions for utilizing mechatronics to design innovative, accurate, and intelligent medical devices and optimize conventional medical instruments. After an introduction to mechatronics, the book addresses sensing technologies, actuators and feedback sensors, mechanisms and mechanical devices, and processing and control systems. Artificial intelligence, expert systems, and medical imaging are also covered. This pioneering guide concludes by discussing applications of mechatronics in medicine and biomedical engineering and presenting seven real-world medical case studies. In-depth details on: Sensing technology Electromechanical, fluid, pneumatic power, and other types of actuators Feedback sensors Mechanisms, mechanical devices, and their functions Principles and methods of processing and controlling mechatronics systems Artificial intelligence, expert systems, artificial neural networks, fuzzy systems, and neuro fuzzy systems Medical imaging, including ultrasound, MRI, CT scan, and nuclear imaging Medical case studies in mechatronics
Biomedical Engineering and Information Systems: Technologies, Tools and Applications
Author: Shukla, Anupam
Publisher: IGI Global
ISBN: 161692005X
Category : Medical
Languages : en
Pages : 383
Book Description
"Bridging the disciplines of engineering and medicine, this book informs researchers, clinicians, and practitioners of the latest developments in diagnostic tools, decision support systems, and intelligent devices that impact and redefine research in and delivery of medical services"--Provided by publisher.
Publisher: IGI Global
ISBN: 161692005X
Category : Medical
Languages : en
Pages : 383
Book Description
"Bridging the disciplines of engineering and medicine, this book informs researchers, clinicians, and practitioners of the latest developments in diagnostic tools, decision support systems, and intelligent devices that impact and redefine research in and delivery of medical services"--Provided by publisher.
Finite Element Analysis for Biomedical Engineering Applications
Author: Z. Yang
Publisher: CRC Press
ISBN: 0429592159
Category : Mathematics
Languages : en
Pages : 319
Book Description
Finite element analysis has been widely applied to study biomedical problems. This book aims to simulate some common medical problems using finite element advanced technologies, which establish a base for medical researchers to conduct further investigations. This book consists of four main parts: (1) bone, (2) soft tissues, (3) joints, and (4) implants. Each part starts with the structure and function of the biology and then follows the corresponding finite element advanced features, such as anisotropic nonlinear material, multidimensional interpolation, XFEM, fiber enhancement, UserHyper, porous media, wear, and crack growth fatigue analysis. The final section presents some specific biomedical problems, such as abdominal aortic aneurysm, intervertebral disc, head impact, knee contact, and SMA cardiovascular stent. All modeling files are attached in the appendixes of the book. This book will be helpful to graduate students and researchers in the biomedical field who engage in simulations of biomedical problems. The book also provides all readers with a better understanding of current advanced finite element technologies. Details finite element modeling of bone, soft tissues, joints, and implants Presents advanced finite element technologies, such as fiber enhancement, porous media, wear, and crack growth fatigue analysis Discusses specific biomedical problems, such as abdominal aortic aneurysm, intervertebral disc, head impact, knee contact, and SMA cardiovascular stent Explains principles for modeling biology Provides various descriptive modeling files
Publisher: CRC Press
ISBN: 0429592159
Category : Mathematics
Languages : en
Pages : 319
Book Description
Finite element analysis has been widely applied to study biomedical problems. This book aims to simulate some common medical problems using finite element advanced technologies, which establish a base for medical researchers to conduct further investigations. This book consists of four main parts: (1) bone, (2) soft tissues, (3) joints, and (4) implants. Each part starts with the structure and function of the biology and then follows the corresponding finite element advanced features, such as anisotropic nonlinear material, multidimensional interpolation, XFEM, fiber enhancement, UserHyper, porous media, wear, and crack growth fatigue analysis. The final section presents some specific biomedical problems, such as abdominal aortic aneurysm, intervertebral disc, head impact, knee contact, and SMA cardiovascular stent. All modeling files are attached in the appendixes of the book. This book will be helpful to graduate students and researchers in the biomedical field who engage in simulations of biomedical problems. The book also provides all readers with a better understanding of current advanced finite element technologies. Details finite element modeling of bone, soft tissues, joints, and implants Presents advanced finite element technologies, such as fiber enhancement, porous media, wear, and crack growth fatigue analysis Discusses specific biomedical problems, such as abdominal aortic aneurysm, intervertebral disc, head impact, knee contact, and SMA cardiovascular stent Explains principles for modeling biology Provides various descriptive modeling files
Mechanism Analysis
Author: Lyndon O. Barton
Publisher: CRC Press
ISBN: 9780824787943
Category : Technology & Engineering
Languages : en
Pages : 744
Book Description
This updated and enlarged Second Edition provides in-depth, progressive studies of kinematic mechanisms and offers novel, simplified methods of solving typical problems that arise in mechanisms synthesis and analysis - concentrating on the use of algebra and trigonometry and minimizing the need for calculus.;It continues to furnish complete coverage of: key concepts, including kinematic terminology, uniformly accelerated motion, and the properties of vectors; graphical techniques for both velocity and acceleration analysis; analytical techniques; and ready-to-use computer and calculator programmes for analyzing basic classes of mechanisms.;This edition supplies detailed explications of such new topics as: gears, gear trains, and cams; velocity and acceleration analyses of rolling elements; acceleration analysis of sliding contact mechanisms by the effective component method; four-bar analysis by the parallelogram method; and centre of curvature determination methods.
Publisher: CRC Press
ISBN: 9780824787943
Category : Technology & Engineering
Languages : en
Pages : 744
Book Description
This updated and enlarged Second Edition provides in-depth, progressive studies of kinematic mechanisms and offers novel, simplified methods of solving typical problems that arise in mechanisms synthesis and analysis - concentrating on the use of algebra and trigonometry and minimizing the need for calculus.;It continues to furnish complete coverage of: key concepts, including kinematic terminology, uniformly accelerated motion, and the properties of vectors; graphical techniques for both velocity and acceleration analysis; analytical techniques; and ready-to-use computer and calculator programmes for analyzing basic classes of mechanisms.;This edition supplies detailed explications of such new topics as: gears, gear trains, and cams; velocity and acceleration analyses of rolling elements; acceleration analysis of sliding contact mechanisms by the effective component method; four-bar analysis by the parallelogram method; and centre of curvature determination methods.
Materials for Biomedical Engineering: Thermoset and Thermoplastic Polymers
Author: Valentina Grumezescu
Publisher: Elsevier
ISBN: 0128168757
Category : Technology & Engineering
Languages : en
Pages : 598
Book Description
Materials for Biomedical Engineering: Thermoset and Thermoplastic Polymers presents the newest and most interesting approaches to intelligent polymer engineering in both current and future progress in biomedical sciences. Particular emphasis is placed on the properties needed for each selected polymer and how to increase their biomedical potential in varying applications, such as drug delivery and tissue engineering. These materials are intended for use in diagnoses, therapy and prophylaxis, but are also relatable to other biomedical related applications, such as sensors. Recent developments and future perspectives regarding their use in biomedicine are discussed in detail, making this book an ideal source on the topic. - Highlights the most well-known applications of thermoset and thermoplastic polymers in biological and biomedical engineering - Presents novel opportunities and ideas for developing or improving technologies in materials for companies, those in biomedical industries, and others - Features at least 50% of references from the last 2-3 years
Publisher: Elsevier
ISBN: 0128168757
Category : Technology & Engineering
Languages : en
Pages : 598
Book Description
Materials for Biomedical Engineering: Thermoset and Thermoplastic Polymers presents the newest and most interesting approaches to intelligent polymer engineering in both current and future progress in biomedical sciences. Particular emphasis is placed on the properties needed for each selected polymer and how to increase their biomedical potential in varying applications, such as drug delivery and tissue engineering. These materials are intended for use in diagnoses, therapy and prophylaxis, but are also relatable to other biomedical related applications, such as sensors. Recent developments and future perspectives regarding their use in biomedicine are discussed in detail, making this book an ideal source on the topic. - Highlights the most well-known applications of thermoset and thermoplastic polymers in biological and biomedical engineering - Presents novel opportunities and ideas for developing or improving technologies in materials for companies, those in biomedical industries, and others - Features at least 50% of references from the last 2-3 years
Materials for Biomedical Engineering
Author: Mohamed N. Rahaman
Publisher: John Wiley & Sons
ISBN: 1119551080
Category : Science
Languages : en
Pages : 724
Book Description
MATERIALS FOR BIOMEDICAL ENGINEERING A comprehensive yet accessible introductory textbook designed for one-semester courses in biomaterials Biomaterials are used throughout the biomedical industry in a range of applications, from cardiovascular devices and medical and dental implants to regenerative medicine, tissue engineering, drug delivery, and cancer treatment. Materials for Biomedical Engineering: Fundamentals and Applications provides an up-to-date introduction to biomaterials, their interaction with cells and tissues, and their use in both conventional and emerging areas of biomedicine. Requiring no previous background in the subject, this student-friendly textbook covers the basic concepts and principles of materials science, the classes of materials used as biomaterials, the degradation of biomaterials in the biological environment, biocompatibility phenomena, and the major applications of biomaterials in medicine and dentistry. Throughout the text, easy-to-digest chapters address key topics such as the atomic structure, bonding, and properties of biomaterials, natural and synthetic polymers, immune responses to biomaterials, implant-associated infections, biomaterials in hard and soft tissue repair, tissue engineering and drug delivery, and more. Offers accessible chapters with clear explanatory text, tables and figures, and high-quality illustrations Describes how the fundamentals of biomaterials are applied in a variety of biomedical applications Features a thorough overview of the history, properties, and applications of biomaterials Includes numerous homework, review, and examination problems, full references, and further reading suggestions Materials for Biomedical Engineering: Fundamentals and Applications is an excellent textbook for advanced undergraduate and graduate students in biomedical materials science courses, and a valuable resource for medical and dental students as well as students with science and engineering backgrounds with interest in biomaterials.
Publisher: John Wiley & Sons
ISBN: 1119551080
Category : Science
Languages : en
Pages : 724
Book Description
MATERIALS FOR BIOMEDICAL ENGINEERING A comprehensive yet accessible introductory textbook designed for one-semester courses in biomaterials Biomaterials are used throughout the biomedical industry in a range of applications, from cardiovascular devices and medical and dental implants to regenerative medicine, tissue engineering, drug delivery, and cancer treatment. Materials for Biomedical Engineering: Fundamentals and Applications provides an up-to-date introduction to biomaterials, their interaction with cells and tissues, and their use in both conventional and emerging areas of biomedicine. Requiring no previous background in the subject, this student-friendly textbook covers the basic concepts and principles of materials science, the classes of materials used as biomaterials, the degradation of biomaterials in the biological environment, biocompatibility phenomena, and the major applications of biomaterials in medicine and dentistry. Throughout the text, easy-to-digest chapters address key topics such as the atomic structure, bonding, and properties of biomaterials, natural and synthetic polymers, immune responses to biomaterials, implant-associated infections, biomaterials in hard and soft tissue repair, tissue engineering and drug delivery, and more. Offers accessible chapters with clear explanatory text, tables and figures, and high-quality illustrations Describes how the fundamentals of biomaterials are applied in a variety of biomedical applications Features a thorough overview of the history, properties, and applications of biomaterials Includes numerous homework, review, and examination problems, full references, and further reading suggestions Materials for Biomedical Engineering: Fundamentals and Applications is an excellent textbook for advanced undergraduate and graduate students in biomedical materials science courses, and a valuable resource for medical and dental students as well as students with science and engineering backgrounds with interest in biomaterials.
Modeling and Simulation in Biomedical Engineering: Applications in Cardiorespiratory Physiology
Author: Willem L. van Meurs
Publisher: McGraw Hill Professional
ISBN: 0071714464
Category : Technology & Engineering
Languages : en
Pages : 216
Book Description
THEORY AND PRACTICE OF MODELING AND SIMULATING HUMAN PHYSIOLOGY Written by a coinventor of the Human Patient Simulator (HPS) and past president of the Society in Europe for Simulation Applied to Medicine (SESAM), Modeling and Simulation in Biomedical Engineering: Applications in Cardiorespiratory Physiology is a compact and consistent introduction to this expanding field. The book divides the modeling and simulation process into five manageable steps--requirements, conceptual models, mathematical models, software implementation, and simulation results and validation. A framework and a basic set of deterministic, continuous-time models for the cardiorespiratory system are provided. This timely resource also addresses advanced topics, including sensitivity analysis and setting model requirements as part of an encompassing simulation and simulator design. Practical examples provide you with the skills to evaluate and adapt existing physiologic models or create new ones for specific applications. Coverage includes: Signals and systems Model requirements Conceptual models Mathematical models Software implementation Simulation results and model validation Cardiorespiratory system model Circulation Respiration Physiologic control Sensitivity analysis of a cardiovascular model Design of model-driven acute care training simulators “Uniquely qualified to author such a text, van Meurs is one of the original developers of CAE Healthcare’s Human Patient Simulator (HPS). ...His understanding of mathematics, human physiology, pharmacology, control systems, and systems engineering, combined with a conversational writing style, results in a readable text. ...The ample illustrations and tables also break up the text and make reading the book easier on the eyes. ...concise yet in conversational style, with real-life examples. This book is highly recommended for coursework in physiologic modeling and for all who are interested in simulator design and development. The book pulls all these topics together under one cover and is an important contribution to biomedical literature.” --IEEE Pulse, January 2014 “This book is written by a professional engineer who is unique in that he seems to have a natural understanding of 3 key areas as follows: the hardware involved with simulators, human physiology, and mathematical modeling. Willem van Meurs is one of the inventors of the model-driven human patient simulator (HPS), and so, he is very qualified to write this book. The book is written in a clear way, using the first person throughout, in a conversational manner, with a style that involves posing questions and answering them in subsequent text. ...The book starts with a very useful introduction and background chapter, setting out the scene for the rest of the book. ...I have used his book in enhancing my own talks and understanding human patient simulation and can strongly recommend it.” --Simulation in Healthcare December, 2012 Reviewed by Mark A. Tooley, Ph.D., Department of Medical Physics and Bioengineering, Royal United Hospital, Combe Park, Bath, UK.
Publisher: McGraw Hill Professional
ISBN: 0071714464
Category : Technology & Engineering
Languages : en
Pages : 216
Book Description
THEORY AND PRACTICE OF MODELING AND SIMULATING HUMAN PHYSIOLOGY Written by a coinventor of the Human Patient Simulator (HPS) and past president of the Society in Europe for Simulation Applied to Medicine (SESAM), Modeling and Simulation in Biomedical Engineering: Applications in Cardiorespiratory Physiology is a compact and consistent introduction to this expanding field. The book divides the modeling and simulation process into five manageable steps--requirements, conceptual models, mathematical models, software implementation, and simulation results and validation. A framework and a basic set of deterministic, continuous-time models for the cardiorespiratory system are provided. This timely resource also addresses advanced topics, including sensitivity analysis and setting model requirements as part of an encompassing simulation and simulator design. Practical examples provide you with the skills to evaluate and adapt existing physiologic models or create new ones for specific applications. Coverage includes: Signals and systems Model requirements Conceptual models Mathematical models Software implementation Simulation results and model validation Cardiorespiratory system model Circulation Respiration Physiologic control Sensitivity analysis of a cardiovascular model Design of model-driven acute care training simulators “Uniquely qualified to author such a text, van Meurs is one of the original developers of CAE Healthcare’s Human Patient Simulator (HPS). ...His understanding of mathematics, human physiology, pharmacology, control systems, and systems engineering, combined with a conversational writing style, results in a readable text. ...The ample illustrations and tables also break up the text and make reading the book easier on the eyes. ...concise yet in conversational style, with real-life examples. This book is highly recommended for coursework in physiologic modeling and for all who are interested in simulator design and development. The book pulls all these topics together under one cover and is an important contribution to biomedical literature.” --IEEE Pulse, January 2014 “This book is written by a professional engineer who is unique in that he seems to have a natural understanding of 3 key areas as follows: the hardware involved with simulators, human physiology, and mathematical modeling. Willem van Meurs is one of the inventors of the model-driven human patient simulator (HPS), and so, he is very qualified to write this book. The book is written in a clear way, using the first person throughout, in a conversational manner, with a style that involves posing questions and answering them in subsequent text. ...The book starts with a very useful introduction and background chapter, setting out the scene for the rest of the book. ...I have used his book in enhancing my own talks and understanding human patient simulation and can strongly recommend it.” --Simulation in Healthcare December, 2012 Reviewed by Mark A. Tooley, Ph.D., Department of Medical Physics and Bioengineering, Royal United Hospital, Combe Park, Bath, UK.
Biomedical Applications of Control Engineering
Author: Selim S. Hacısalihzade
Publisher: Springer
ISBN: 9783642372780
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Biomedical Applications of Control Engineering is a lucidly written textbook for graduate control engineering and biomedical engineering students as well as for medical practitioners who want to get acquainted with quantitative methods. It is based on decades of experience both in control engineering and clinical practice. The book begins by reviewing basic concepts of system theory and the modeling process. It then goes on to discuss control engineering application areas like: Different models for the human operator,dosage and timing optimization in oral drug administration, measuring symptoms of and optimal dopaminergic therapy in Parkinson’s disease, measurement and control of blood glucose levels both naturally and by means of external controllers in diabetes, and control of depth of anaesthesia using inhalational anaesthetic agents like sevoflurane using both fuzzy and state feedback controllers. All chapters include three types of exercises constructed to: Review the concepts discussed in the chapter, allow the reader to apply the newly acquired techniques and subject related facts on simple problems, and indicate directions for open ended theses projects. Appendices on Optimal Control and Fuzzy Control meant as refreshers on those control engineering techniques used throughout the book are also included.
Publisher: Springer
ISBN: 9783642372780
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Biomedical Applications of Control Engineering is a lucidly written textbook for graduate control engineering and biomedical engineering students as well as for medical practitioners who want to get acquainted with quantitative methods. It is based on decades of experience both in control engineering and clinical practice. The book begins by reviewing basic concepts of system theory and the modeling process. It then goes on to discuss control engineering application areas like: Different models for the human operator,dosage and timing optimization in oral drug administration, measuring symptoms of and optimal dopaminergic therapy in Parkinson’s disease, measurement and control of blood glucose levels both naturally and by means of external controllers in diabetes, and control of depth of anaesthesia using inhalational anaesthetic agents like sevoflurane using both fuzzy and state feedback controllers. All chapters include three types of exercises constructed to: Review the concepts discussed in the chapter, allow the reader to apply the newly acquired techniques and subject related facts on simple problems, and indicate directions for open ended theses projects. Appendices on Optimal Control and Fuzzy Control meant as refreshers on those control engineering techniques used throughout the book are also included.