Measurements and Predictions of Turbulence Generation in Homogeneous Particle-laden Flows

Measurements and Predictions of Turbulence Generation in Homogeneous Particle-laden Flows PDF Author: J.-H. Chen
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

Measurements and Predictions of Turbulence Generation in Homogeneous Particle-laden Flows

Measurements and Predictions of Turbulence Generation in Homogeneous Particle-laden Flows PDF Author: J.-H. Chen
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Turbulence Generation in Homogeneous Dilute Particle-laden Flows

Turbulence Generation in Homogeneous Dilute Particle-laden Flows PDF Author: Jeng-Horng Chen
Publisher:
ISBN:
Category :
Languages : en
Pages : 404

Get Book Here

Book Description


Turbulence Generation in Homogeneous Particle-laden Flows

Turbulence Generation in Homogeneous Particle-laden Flows PDF Author: J.-H. Chen
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Modeling Approaches and Computational Methods for Particle-laden Turbulent Flows

Modeling Approaches and Computational Methods for Particle-laden Turbulent Flows PDF Author: Shankar Subramaniam
Publisher: Academic Press
ISBN: 0323901344
Category : Technology & Engineering
Languages : en
Pages : 588

Get Book Here

Book Description
Modelling Approaches and Computational Methods for Particle-laden Turbulent Flows introduces the principal phenomena observed in applications where turbulence in particle-laden flow is encountered while also analyzing the main methods for analyzing numerically. The book takes a practical approach, providing advice on how to select and apply the correct model or tool by drawing on the latest research. Sections provide scales of particle-laden turbulence and the principal analytical frameworks and computational approaches used to simulate particles in turbulent flow. Each chapter opens with a section on fundamental concepts and theory before describing the applications of the modelling approach or numerical method. Featuring explanations of key concepts, definitions, and fundamental physics and equations, as well as recent research advances and detailed simulation methods, this book is the ideal starting point for students new to this subject, as well as an essential reference for experienced researchers. - Provides a comprehensive introduction to the phenomena of particle laden turbulent flow - Explains a wide range of numerical methods, including Eulerian-Eulerian, Eulerian-Lagrange, and volume-filtered computation - Describes a wide range of innovative applications of these models

Turbulence Modulation in Particle-laden Flows

Turbulence Modulation in Particle-laden Flows PDF Author: John D. Schwarzkopf
Publisher:
ISBN:
Category : Computational fluid dynamics
Languages : en
Pages : 128

Get Book Here

Book Description


Predictive Modeling of Particle-laden, Turbulent Flows

Predictive Modeling of Particle-laden, Turbulent Flows PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 18

Get Book Here

Book Description
The successful prediction of particle-laden, turbulent flows relies heavily on the representation of turbulence in the gas phase. Several types of turbulence models for single-phase gas flow have been developed which compare reasonably well with experimental data. In the present work, a low-Reynolds'' k-[epsilon], closure model is chosen to describe the Reynolds stresses associated with gas-phase turbulence. This closure scheme, which involves transport equations for the turbulent kinetic energy and its dissipation rate, is valid in the turbulent core as well as the viscous sublayer. Several versions of the low-Reynolds k-[epsilon] closure are documented in the literature. However, even those models which are similar in theory often differ considerably in their quantitative and qualitative predictions, making the selection of such a model a difficult task. The purpose of this progress report is to document our findings on the performance of ten different versions of the low-Reynolds k-[epsilon] model on predicting fully developed pipe flow. The predictions are compared with the experimental data of Schildknecht, et al. (1979). With the exception of the model put forth by Hoffman (1975), the predictions of all the closures show reasonable agreement for the mean velocity profile. However, important quantitative differences exist for the turbulent kinetic energy profile. In addition, the predicted eddy viscosity profile and the wall-region profile of the turbulent kinetic energy dissipation rate exhibit both quantitative and qualitative differences. An effort to extend the present comparisons to include experimental measurements of other researchers is recommended in order to further evaluate the performance of the models.

Study of Turbulence Modulation by Finite-size Solid Particles with the Lattice Boltzmann Method

Study of Turbulence Modulation by Finite-size Solid Particles with the Lattice Boltzmann Method PDF Author: Cheng Peng
Publisher:
ISBN: 9780438241909
Category :
Languages : en
Pages : 231

Get Book Here

Book Description
Turbulent flows laden with finite-size solid particles are found in a variety of natural and engineering processes. However, the overall understanding of how the flow properties, such as turbulent intensity and flow drag, are modified by the addition of the particles is still limited. So far, the only rigorous approach to investigate the modulation mechanisms at the particle scale is to numerically solve the disturbance flow around each particle, known as the interface-resolved simulations (IRS). However, the application of IRS in the turbulent particle-laden flow is particularly challenging due to the requirements of resolving all the length and time scales in the turbulent flow, as well as the need to realize the no-slip boundary condition on the moving particle surfaces. ☐ In recent years, the lattice Boltzmann method (LBM) has emerged as an efficient and accurate numerical approach for computational fluid dynamics. Compared to the conventional approaches of directly solving the Navier-Stokes equations, LBM is simple to code, easy to parallelize, and flexible in treating boundary conditions. In particular, the no-slip boundary treatment based on bounce-back scheme and mesoscopic momentum exchange in LBM take full advantage of the gas kinetic description. However, the realization of these treatments in particle-laden turbulent flow simulations is still rare. So far, the majority of the particle-laden turbulent flow simulations relies on the smoothed-boundary treatments, such as the immersed boundary methods, which tends to induce artificial dissipation. In this dissertation, LBM with a sharp-interface treatment is developed to investigate turbulence modulation by finite-size solid particles. ☐ After a thorough validation, the method is applied to the simulations of a turbulent channel flow laden with both fixed and moving particles. The interactions between the dispersed particles and carrier turbulent flows, especially the modulation induced by the particles on the turbulence intensity and its parameter dependence are examined. The addition of particles is found to result in a more homogeneous distribution of turbulent kinetic energy (TKE) in the wall normal direction and a more isotropic TKE distribution among different spatial directions, comparing to the single-phase turbulent channel flow. To gain further insight, the budget equations of both the total TKE and component-wise TKE in the particle-laden turbulent flows are derived and analyzed using the simulation data. The budget analysis of the total TKE shows that the production rate of TKE from the mean flow is modified to become more uniform in the wall-normal direction by the presence of particles, which is responsible for the more homogeneous distribution of TKE. Specifically, in the buffer region where the TKE source is maximized in the single-phase flow, the TKE source due to the mean shear is reduced since both the mean flow velocity gradient and the Reynolds stress are reduced by the presence of particles. This reduction is found to be related to the particle inertia, where particles with larger inertia result in greater reduction of the TKE source. On the other hand, particles pump energy to turbulent fluctuations by doing work directly (moving particles) or inducing disturbances to the mean flow (fixed particles), converting more mechanical energy from the mean flow to the turbulent motion. The strength of this extra TKE source is related to the dynamics of the wake developed behind particles and therefore is particle-Reynolds-number dependent. The relative strength of the above two mechanisms determines whether the turbulence intensity of a turbulent channel flow is augmented or attenuated by the presence of particles. The budget analysis of component-wise TKE reveals that the more isotropic distribution of TKE among different spatial directions results from the enhanced inter-components transfer of TKE. This enhancement is found to originate from the spherical shape of the particles and particle rotation. ☐ In summary, the improved LBM simulation method based on the sharp-interface treatment provides a better alternative for particle-laden turbulent flow simulations than the commonly used smoothed-interface treatments. The physical results from this dissertation research advance our understanding of flow modulation induced by finite-size solid particles in turbulent flows, particularly in wall-bounded turbulent flows.

Modeling Particle-laden Turbulent Flows with the Conditional Quadrature Method of Moments

Modeling Particle-laden Turbulent Flows with the Conditional Quadrature Method of Moments PDF Author: Dennis Martin Dunn
Publisher:
ISBN:
Category : Computational fluid dynamics
Languages : en
Pages : 178

Get Book Here

Book Description
Conventional fluid dynamics models such as the Navier-Stokes equations are derived for prediction of fluid motion at or near equilibrium, classic examples being the motion of fluids for which inter-molecular collisions are dominant. Flows at equilibrium permit simplifications such as the introduction of viscosity and also lead to solutions that are single-valued. However, many other regimes of interest include "fluids"' far from equilibrium; for example, rarefied gases or particle-laden flows in which the dispersed phase can be comprised of granular solids, droplets, or bubbles. Particle motion in these flows is not typically dominated by collisions and may exhibit significant memory effects; therefore, is often poorly described using continuum, field-based (Eulerian) approaches. Non-equilibrium flows generally lack a straightforward counterpart to viscosity and their multi-valued solutions cannot be represented by most Eulerian methods. This strongly motivates different strategies to address current shortcomings and the novel approach adopted in this work is based on the Conditional Quadrature Method of Moments (CQMOM). In CQMOM, moment equations are derived from the Boltzmann equation using a quadrature approximation of the velocity probability density function (PDF). CQMOM circumvents the drawbacks of current methods and leads to multivariate and multidimensional solutions in an Eulerian frame of reference. In the present work, the discretized PDF is resolved using an adaptive two-point quadrature in three-dimensional velocity space. The method is applied to computation of a series of non-equilibrium flows, ranging from simple two-dimensional test cases to fully-turbulent three-dimensional wall-bounded particle-laden flows. The primary contribution of the present effort is on development, application, and assessment of CQMOM for predicting the key features of dilute particle-laden flows. Statistical descriptors such as mean concentration and mean velocity are in good agreement with previous results, for both collision-less and collisional flows at varying particle Stokes numbers. Turbulent statistics and measures of local accumulation agree less favorably with prior results and identify areas for improvement in the modeling strategy.

Subgrid-scale Modeling and Wavelet Analysis for Preferential Concentration of Inertial Point Particles in Turbulent Flows

Subgrid-scale Modeling and Wavelet Analysis for Preferential Concentration of Inertial Point Particles in Turbulent Flows PDF Author: Maxime Bassenne
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
A striking feature of particle-laden turbulent flows is the presence of particle clouds that result from the tendency of inertial particles to preferentially sample specific regions of the flow field. This phenomenon is central to a number of important physical processes. However, computational predictions of preferential concentration at high Reynolds numbers are challenging, since the numerical resolution of the participating scales is typically unaffordable. This dissertation contributes both to the analysis of the preferential concentration phenomenon and the development of subgrid-scale models for the prediction of preferential concentration in large-eddy simulations of particle-laden turbulence. First, direct numerical simulations of incompressible homogeneous-isotropic turbulence laden with a dilute suspension of inertial point particles are performed in conjunction with a wavelet multi-resolution analysis of the results. The use of spatially localized wavelet basis functions enables the simultaneous consideration of physical and scale spaces in the spectral characterization of the flow field of the carrier phase and the concentration field of the disperse phase. The multi-resolution analysis of the disperse phase provides statistical information about the spatial variability of a scale-dependent coarse-grained number density field and the local energy spectra of its fluctuations, characterizing the sensitivities of those quantities to variations in scale and Stokes number. In particular, the spatial variabilities of the wavelet energy spectrum of the particle concentration fluctuations are observed to be maximum in regimes where the particles preferentially concentrate. The results highlight the scale-dependent inhomogeneities of the structures in the concentration field generated by preferential concentration, and the existence of characteristic scales of interaction between the disperse and carrier phases. Additionally, an inter-phase multi-resolution analysis is performed that indicates the occurrence of a spatial anti-correlation between the enstrophy and kinetic-energy spectra of the carrier phase and the particle concentration at small scales in regimes where preferential concentration is important. This anti-correlation vanishes as the scale is increased, and is largely suppressed when the preferential-concentration effect is negligible. Secondly, a wavelet-based method for extraction of clusters of inertial particles in turbulent flows is presented that is based on decomposing Eulerian particle number-density fields into the sum of a coherent (organized) and an incoherent (disorganized) components. The coherent component is associated with the clusters and is extracted by filtering the wavelet-transformed particle number-density field based on an energy threshold. The analysis shows that in regimes where the preferential concentration is important, the coherent component representing the clusters can be described by just 1.6% of the total number of wavelet coefficients, thereby illustrating the sparsity of the particle number-density field. On the other hand, the incoherent portion is visually structureless and much less correlated that the coherent one. An application of the method is illustrated in the form of a grid-adaptation algorithm that results in non-uniform meshes with fine and coarse elements near and away from particle clusters, respectively. In regimes where preferential concentration in clusters is important, the grid adaptation leads to a reduction of the number of control volumes by one to two orders of magnitude. Thirdly, two dynamic models for turbulent velocity fluctuations are proposed for large-eddy simulations of dispersed multiphase flows. The first model is simple, involves no significant computational overhead, contains no adjustable parameters, and is flexible enough to be deployed in any type of flow solvers and grids, including unstructured setups. The approach is based on the use of elliptic differential filters to model the subgrid-scale velocity. The only model parameter, which is related to the nominal filter width, is determined dynamically by imposing consistency constraints on the estimated subgrid energetics. The second model constructs a velocity that contains scales smaller than the coarse-grid resolution, thereby enabling the prediction of small-scale phenomena such as the preferential concentration of particles in high-strain regions. The construction of the spectrally enriched velocity field in physical space is made dynamically, and is based on 1) modeling the smallest resolved eddies of sizes comparable to the grid size via approximate deconvolution, and 2) reconstructing the subgrid-scale fluctuations via non-linear generation of small-scale turbulence. The model does not contain tunable parameters, can be deployed in non-uniform grids, and is applicable to inhomogeneous flows subject to arbitrary boundary conditions. The performance of both models is tested in large-eddy simulations of homogeneous-isotropic turbulence laden with particles, where improved agreement with direct numerical simulation results is obtained for the statistics of preferential concentration. Lastly, application to wall-modeled large-eddy simulations of particle-laden channel flow is presented. Results of the application of existing wall models to particle-laden turbulent channel flows are described, and prospective pathways for improving their performance are suggested. The focus is on the prediction of the spatial distribution statistics of the disperse phase. It is observed that wall-modeled large-eddy simulations without particular treatment for the particles in the wall-adjacent cells overpredict the near-wall accumulation of particles. The choice of the continuous representation of the velocity field between the first grid point and the wall is shown to be of primary importance. A wall-modeling strategy is explored that performs well at large Stokes numbers. It relies on using interpolation kernels near the wall that mimic the law of the wall for the wall-parallel velocity, and direct numerical simulation profiles of the fluctuations for the wall-perpendicular velocity. Applications of the two developed subgrid-scale models are shown to improve the prediction of preferential concentration, but have no effect on the mean concentration profile.

Turbulent Flows

Turbulent Flows PDF Author: G. Biswas
Publisher: CRC Press
ISBN: 9780849310140
Category : Technology & Engineering
Languages : en
Pages : 478

Get Book Here

Book Description
This book allows readers to tackle the challenges of turbulent flow problems with confidence. It covers the fundamentals of turbulence, various modeling approaches, and experimental studies. The fundamentals section includes isotropic turbulence and anistropic turbulence, turbulent flow dynamics, free shear layers, turbulent boundary layers and plumes. The modeling section focuses on topics such as eddy viscosity models, standard K-E Models, Direct Numerical Stimulation, Large Eddy Simulation, and their applications. The measurement of turbulent fluctuations experiments in isothermal and stratified turbulent flows are explored in the experimental methods section. Special topics include modeling of near wall turbulent flows, compressible turbulent flows, and more.