Measurement of the Top Quark Mass in the Dileptonic Decay Channel at CMS

Measurement of the Top Quark Mass in the Dileptonic Decay Channel at CMS PDF Author: Nathan Mirman
Publisher:
ISBN:
Category :
Languages : en
Pages : 390

Get Book Here

Book Description
This dissertation presents a measurement of the top quark mass (Mt) in the dileptonic decay channel using data from proton-proton collisions at sqrt(s) = 8 TeV recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 19.7 ± 0.5 fb-1. The analysis is based on three observables whose distributions are sensitive to the value of Mt. The Mbl invariant mass and MT2 'stransverse mass' observables are employed in a simultaneous fit to determine the value of Mt and an overall jet energy scale factor (JSF). In a complementary approach, the MT2-assisted on-shell reconstruction technique is used to construct an Mblv invariant mass observable that is combined with MT2 to measure Mt. The shapes of the observables, along with their evolutions in Mt and JSF, are modeled by a non-parametric Gaussian process regression technique. The sensitivity of the observables to the value of Mt is investigated using a Fisher information density function. The top quark mass is measured to be 172.22 ± 0.18 (stat) ± 0.91 (syst) GeV. This dissertation also presents a missing transverse momentum (MET) significance variable, which is used to estimate the compatibility of the reconstructed MET with a zero nominal value. This variable may be used to discriminate between events containing real MET due to undetected particles and spurious MET due to object misreconstruction, finite detector resolution, or detector noise. The MET significance variable is tuned using data-driven techniques, and its performance is evaluated using the CMS Run 1 and Run 2 datasets. ...

Measurement of the Top Quark Mass in the Dileptonic Decay Channel at CMS

Measurement of the Top Quark Mass in the Dileptonic Decay Channel at CMS PDF Author: Nathan Mirman
Publisher:
ISBN:
Category :
Languages : en
Pages : 390

Get Book Here

Book Description
This dissertation presents a measurement of the top quark mass (Mt) in the dileptonic decay channel using data from proton-proton collisions at sqrt(s) = 8 TeV recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 19.7 ± 0.5 fb-1. The analysis is based on three observables whose distributions are sensitive to the value of Mt. The Mbl invariant mass and MT2 'stransverse mass' observables are employed in a simultaneous fit to determine the value of Mt and an overall jet energy scale factor (JSF). In a complementary approach, the MT2-assisted on-shell reconstruction technique is used to construct an Mblv invariant mass observable that is combined with MT2 to measure Mt. The shapes of the observables, along with their evolutions in Mt and JSF, are modeled by a non-parametric Gaussian process regression technique. The sensitivity of the observables to the value of Mt is investigated using a Fisher information density function. The top quark mass is measured to be 172.22 ± 0.18 (stat) ± 0.91 (syst) GeV. This dissertation also presents a missing transverse momentum (MET) significance variable, which is used to estimate the compatibility of the reconstructed MET with a zero nominal value. This variable may be used to discriminate between events containing real MET due to undetected particles and spurious MET due to object misreconstruction, finite detector resolution, or detector noise. The MET significance variable is tuned using data-driven techniques, and its performance is evaluated using the CMS Run 1 and Run 2 datasets. ...

Measurement of the Top Quark Mass Simultaneously in Dilepton and Lepton + Jets Decay Channels

Measurement of the Top Quark Mass Simultaneously in Dilepton and Lepton + Jets Decay Channels PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 180

Get Book Here

Book Description
The authors present the first measurement of the top quark mass using simultaneously data from two decay channels. They use a data sample of (square root)s = 1.96 TeV collisions with integrated luminosity of 1.9 fb−1 collected by the CDF II detector. They select dilepton and lepton + jets channel decays of t{bar t} pairs and reconstruct two observables in each topology. They use non-parametric techniques to derive probability density functions from simulated signal and background samples. The observables are the reconstructed top quark mass and the scalar sum of transverse energy of the event in the dilepton topology and the reconstructed top quark mass and the invariant mass of jets from the W boson decay in lepton + jets channel. They perform a simultaneous fit for the top quark mass and the jet energy scale which is constrained in situ by the hadronic W boson resonance from the lepton + jets channel. Using 144 dilepton candidate events and 332 lepton + jets candidate events they measure: M{sub top} = 171.9 ± 1.7 (stat. + JES) ± 1.1 (other sys.) GeV/c2 = 171.9 ± 2.0 GeV/c2. The measurement features a robust treatment of the systematic uncertainties, correlated between the two channels and develops techniques for a future top quark mass measurement simultaneously in all decay channels. Measurements of the W boson mass and the top quark mass provide a constraint on the mass of the yet unobserved Higgs boson. The Higgs boson mass implied by measurement presented here is higher than Higgs boson mass implied by previously published, most precise CDF measurements of the top quark mass in lepton + jets and dilepton channels separately.

CMS Pixel Detector Upgrade and Top Quark Pole Mass Determination

CMS Pixel Detector Upgrade and Top Quark Pole Mass Determination PDF Author: Simon Spannagel
Publisher: Springer
ISBN: 331958880X
Category : Science
Languages : en
Pages : 286

Get Book Here

Book Description
This thesis addresses two different topics, both vital for implementing modern high-energy physics experiments: detector development and data analysis. Providing a concise introduction to both the standard model of particle physics and the basic principles of semiconductor tracking detectors, it presents the first measurement of the top quark pole mass from the differential cross-section of tt+J events in the dileptonic tt decay channel. The first part focuses on the development and characterization of silicon pixel detectors. To account for the expected increase in luminosity of the Large Hadron Collider (LHC), the pixel detector of the compact muon solenoid (CMS) experiment is replaced by an upgraded detector with new front-end electronics. It presents comprehensive test beam studies conducted to verify the design and quantify the performance of the new front-end in terms of tracking efficiency and spatial resolution. Furthermore, it proposes a new cluster interpolation method, which utilizes the third central moment of the cluster charge distribution to improve the position resolution. The second part of the thesis introduces an alternative measurement of the top quark mass from the normalized differential production cross-sections of dileptonic top quark pair events with an additional jet. The energy measurement is 8TeV. Using theoretical predictions at next-to-leading order in perturbative Quantum Chromodynamics (QCD), the top quark pole mass is determined using a template fit method.

Measurement of the Top Quark Mass Simultaneously in Dilepton and Lepton + Jets Decay Channels

Measurement of the Top Quark Mass Simultaneously in Dilepton and Lepton + Jets Decay Channels PDF Author: Wojciech T. Fedorko
Publisher:
ISBN:
Category : Quarks
Languages : en
Pages : 338

Get Book Here

Book Description


Precision Measurements of the Top Quark Mass in the Dileptonic Top Quark Pair Decay Channel at ATLAS

Precision Measurements of the Top Quark Mass in the Dileptonic Top Quark Pair Decay Channel at ATLAS PDF Author: Andreas Alexander Maier
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Measurement of the Top Quark Mass in the Dilepton Final State Using the Matrix Element Method

Measurement of the Top Quark Mass in the Dilepton Final State Using the Matrix Element Method PDF Author: Alexander Grohsjean
Publisher: Springer
ISBN: 9783642140693
Category : Science
Languages : en
Pages : 150

Get Book Here

Book Description
The main pacemakers of scienti?c research are curiosity, ingenuity, and a pinch of persistence. Equipped with these characteristics a young researcher will be s- cessful in pushing scienti?c discoveries. And there is still a lot to discover and to understand. In the course of understanding the origin and structure of matter it is now known that all matter is made up of six types of quarks. Each of these carry a different mass. But neither are the particular mass values understood nor is it known why elementary particles carry mass at all. One could perhaps accept some small generic mass value for every quark, but nature has decided differently. Two quarks are extremely light, three more have a somewhat typical mass value, but one quark is extremely massive. It is the top quark, the heaviest quark and even the heaviest elementary particle that we know, carrying a mass as large as the mass of three iron nuclei. Even though there exists no explanation of why different particle types carry certain masses, the internal consistency of the currently best theory—the standard model of particle physics—yields a relation between the masses of the top quark, the so-called W boson, and the yet unobserved Higgs particle. Therefore, when one assumes validity of the model, it is even possible to take precise measurements of the top quark mass to predict the mass of the Higgs (and potentially other yet unobserved) particles.

Measurement of the Top Quark Mass Using Proton-proton Data at ${\sqrt{(s)}}$

Measurement of the Top Quark Mass Using Proton-proton Data at ${\sqrt{(s)}}$ PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Top Quark Mass Measurement

Top Quark Mass Measurement PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 43

Get Book Here

Book Description
The top quark is the heaviest elementary particle. Its mass is one of the fundamental parameters of the standard model of particle physics, and an important input to precision electroweak tests. This thesis describes three measurements of the top-quark mass in the dilepton decay channel. The dilepton events have two neutrinos in the final state; neutrinos are weakly interacting particles that cannot be detected with a multipurpose experiment. Therefore, the signal of dilepton events consists of a large amount of missing energy and momentum carried off by the neutrinos. The top-quark mass is reconstructed for each event by assuming an additional constraint from a top mass independent distribution. Template distributions are constructed from simulated samples of signal and background events, and parametrized to form continuous probability density functions. The final top-quark mass is derived using a likelihood fit to compare the reconstructed top mass distribution from data to the parametrized templates. One of the analyses uses a novel technique to add top mass information from the observed number of events by including a cross-section-constraint in the likelihood function. All measurements use data samples collected by the CDF II detector.

Measurement of the Top Quark Mass in the Dilepton Final State Using the Matrix Element Method

Measurement of the Top Quark Mass in the Dilepton Final State Using the Matrix Element Method PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 153

Get Book Here

Book Description
The top quark, discovered in 1995 by the CDF and D0 experiments at the Fermilab Tevatron Collider, is the heaviest known fundamental particle. The precise knowledge of its mass yields important constraints on the mass of the yet-unobserved Higgs boson and allows to probe for physics beyond the Standard Model. The first measurement of the top quark mass in the dilepton channel with the Matrix Element method at the D0 experiment is presented. After a short description of the experimental environment and the reconstruction chain from hits in the detector to physical objects, a detailed review of the Matrix Element method is given. The Matrix Element method is based on the likelihood to observe a given event under the assumption of the quantity to be measured, e.g. the mass of the top quark. The method has undergone significant modifications and improvements compared to previous measurements in the lepton+jets channel: the two undetected neutrinos require a new reconstruction scheme for the four-momenta of the final state particles, the small event sample demands the modeling of additional jets in the signal likelihood, and a new likelihood is designed to account for the main source of background containing tauonic Z decay. The Matrix Element method is validated on Monte Carlo simulated events at the generator level. For the measurement, calibration curves are derived from events that are run through the full D0 detector simulation. The analysis makes use of the Run II data set recorded between April 2002 and May 2008 corresponding to an integrated luminosity of 2.8 fb−1. A total of 107 t{bar t} candidate events with one electron and one muon in the final state are selected. Applying the Matrix Element method to this data set, the top quark mass is measured to be m{sub top}{sup Run IIa} = 170.6 ± 6.1(stat.){sub -1.5}{sup +2.1}(syst.)GeV; m{sub top}{sup Run IIb} = 174.1 ± 4.4(stat.){sub -1.8}{sup +2.5}(syst.)GeV; m{sub top}{sup comb} = 172.9 ± 3.6(stat.) ± 2.3(syst.)GeV. Systematic uncertainties are discussed, and the results are interpreted within the Standard Model of particle physics. As the main systematic uncertainty on the top quark mass comes from the knowledge of the absolute jet energy scale, studies for a simultaneous measurement of the top quark mass and the b jet energy scale are presented. The prospects that such a simultaneous determination offer for future measurements of the top quark mass are outlined.

Precision Measurement of Top Quark Mass in Dilepton Channel

Precision Measurement of Top Quark Mass in Dilepton Channel PDF Author: Bodhitha Jayatilaka
Publisher:
ISBN:
Category :
Languages : en
Pages : 9

Get Book Here

Book Description
We present recent measurements of the top quark mass using events collected at the CDF and D0 detectors from p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron. These analyses are performed using events consistent with the decay channel t{bar t} {yields} {bar b}{ell}{sup -}{bar v}{sub {ell}}b{ell}' + v'{sub {ell}}, or the dilepton channel. 230-360 pb{sup -1} of data are used.