Measure-Valued Solutions for Nonlinear Evolution Equations on Banach Spaces and Their Optimal Control

Measure-Valued Solutions for Nonlinear Evolution Equations on Banach Spaces and Their Optimal Control PDF Author: N. U. Ahmed
Publisher: Springer Nature
ISBN: 3031372603
Category : Mathematics
Languages : en
Pages : 236

Get Book Here

Book Description
This book offers the first comprehensive presentation of measure-valued solutions for nonlinear deterministic and stochastic evolution equations on infinite dimensional Banach spaces. Unlike traditional solutions, measure-valued solutions allow for a much broader class of abstract evolution equations to be addressed, providing a broader approach. The book presents extensive results on the existence of measure-valued solutions for differential equations that have no solutions in the usual sense. It covers a range of topics, including evolution equations with continuous/discontinuous vector fields, neutral evolution equations subject to vector measures as impulsive forces, stochastic evolution equations, and optimal control of evolution equations. The optimal control problems considered cover the existence of solutions, necessary conditions of optimality, and more, significantly complementing the existing literature. This book will be of great interest to researchers in functional analysis, partial differential equations, dynamic systems and their optimal control, and their applications, advancing previous research and providing a foundation for further exploration of the field.

Measure-Valued Solutions for Nonlinear Evolution Equations on Banach Spaces and Their Optimal Control

Measure-Valued Solutions for Nonlinear Evolution Equations on Banach Spaces and Their Optimal Control PDF Author: N. U. Ahmed
Publisher: Springer Nature
ISBN: 3031372603
Category : Mathematics
Languages : en
Pages : 236

Get Book Here

Book Description
This book offers the first comprehensive presentation of measure-valued solutions for nonlinear deterministic and stochastic evolution equations on infinite dimensional Banach spaces. Unlike traditional solutions, measure-valued solutions allow for a much broader class of abstract evolution equations to be addressed, providing a broader approach. The book presents extensive results on the existence of measure-valued solutions for differential equations that have no solutions in the usual sense. It covers a range of topics, including evolution equations with continuous/discontinuous vector fields, neutral evolution equations subject to vector measures as impulsive forces, stochastic evolution equations, and optimal control of evolution equations. The optimal control problems considered cover the existence of solutions, necessary conditions of optimality, and more, significantly complementing the existing literature. This book will be of great interest to researchers in functional analysis, partial differential equations, dynamic systems and their optimal control, and their applications, advancing previous research and providing a foundation for further exploration of the field.

Yosida Approximations of Stochastic Differential Equations in Infinite Dimensions and Applications

Yosida Approximations of Stochastic Differential Equations in Infinite Dimensions and Applications PDF Author: T. E. Govindan
Publisher: Springer
ISBN: 3319456849
Category : Mathematics
Languages : en
Pages : 421

Get Book Here

Book Description
This research monograph brings together, for the first time, the varied literature on Yosida approximations of stochastic differential equations (SDEs) in infinite dimensions and their applications into a single cohesive work. The author provides a clear and systematic introduction to the Yosida approximation method and justifies its power by presenting its applications in some practical topics such as stochastic stability and stochastic optimal control. The theory assimilated spans more than 35 years of mathematics, but is developed slowly and methodically in digestible pieces. The book begins with a motivational chapter that introduces the reader to several different models that play recurring roles throughout the book as the theory is unfolded, and invites readers from different disciplines to see immediately that the effort required to work through the theory that follows is worthwhile. From there, the author presents the necessary prerequisite material, and then launches the reader into the main discussion of the monograph, namely, Yosida approximations of SDEs, Yosida approximations of SDEs with Poisson jumps, and their applications. Most of the results considered in the main chapters appear for the first time in a book form, and contain illustrative examples on stochastic partial differential equations. The key steps are included in all proofs, especially the various estimates, which help the reader to get a true feel for the theory of Yosida approximations and their use. This work is intended for researchers and graduate students in mathematics specializing in probability theory and will appeal to numerical analysts, engineers, physicists and practitioners in finance who want to apply the theory of stochastic evolution equations. Since the approach is based mainly in semigroup theory, it is amenable to a wide audience including non-specialists in stochastic processes.

Generalized Functionals of Brownian Motion and Their Applications

Generalized Functionals of Brownian Motion and Their Applications PDF Author: Nasir Uddin Ahmed
Publisher: World Scientific
ISBN: 9814366374
Category : Mathematics
Languages : en
Pages : 314

Get Book Here

Book Description
This invaluable research monograph presents a unified and fascinating theory of generalized functionals of Brownian motion and other fundamental processes such as fractional Brownian motion and Levy process OCo covering the classical WienerOCoIto class including the generalized functionals of Hida as special cases, among others. It presents a thorough and comprehensive treatment of the WienerOCoSobolev spaces and their duals, as well as Malliavin calculus with their applications. The presentation is lucid and logical, and is based on a solid foundation of analysis and topology. The monograph develops the notions of compactness and weak compactness on these abstract Fock spaces and their duals, clearly demonstrating their nontrivial applications to stochastic differential equations in finite and infinite dimensional Hilbert spaces, optimization and optimal control problems. Readers will find the book an interesting and easy read as materials are presented in a systematic manner with a complete analysis of classical and generalized functionals of scalar Brownian motion, Gaussian random fields and their vector versions in the increasing order of generality. It starts with abstract Fourier analysis on the Wiener measure space where a striking similarity of the celebrated RieszOCoFischer theorem for separable Hilbert spaces and the space of WienerOCoIto functionals is drawn out, thus providing a clear insight into the subject.

Optimal Control of Dynamic Systems Driven by Vector Measures

Optimal Control of Dynamic Systems Driven by Vector Measures PDF Author: N. U. Ahmed
Publisher: Springer Nature
ISBN: 3030821390
Category : Mathematics
Languages : en
Pages : 328

Get Book Here

Book Description
This book is devoted to the development of optimal control theory for finite dimensional systems governed by deterministic and stochastic differential equations driven by vector measures. The book deals with a broad class of controls, including regular controls (vector-valued measurable functions), relaxed controls (measure-valued functions) and controls determined by vector measures, where both fully and partially observed control problems are considered. In the past few decades, there have been remarkable advances in the field of systems and control theory thanks to the unprecedented interaction between mathematics and the physical and engineering sciences. Recently, optimal control theory for dynamic systems driven by vector measures has attracted increasing interest. This book presents this theory for dynamic systems governed by both ordinary and stochastic differential equations, including extensive results on the existence of optimal controls and necessary conditions for optimality. Computational algorithms are developed based on the optimality conditions, with numerical results presented to demonstrate the applicability of the theoretical results developed in the book. This book will be of interest to researchers in optimal control or applied functional analysis interested in applications of vector measures to control theory, stochastic systems driven by vector measures, and related topics. In particular, this self-contained account can be a starting point for further advances in the theory and applications of dynamic systems driven and controlled by vector measures.

Optimization Methods and Applications

Optimization Methods and Applications PDF Author: Xiao-qi Yang
Publisher: Springer Science & Business Media
ISBN: 147573333X
Category : Computers
Languages : en
Pages : 439

Get Book Here

Book Description
This edited book is dedicated to Professor N. U. Ahmed, a leading scholar and a renowned researcher in optimal control and optimization on the occasion of his retirement from the Department of Electrical Engineering at University of Ottawa in 1999. The contributions of this volume are in the areas of optimal control, non linear optimization and optimization applications. They are mainly the im proved and expanded versions of the papers selected from those presented in two special sessions of two international conferences. The first special session is Optimization Methods, which was organized by K. L. Teo and X. Q. Yang for the International Conference on Optimization and Variational Inequality, the City University of Hong Kong, Hong Kong, 1998. The other one is Optimal Control, which was organized byK. ~Teo and L. Caccetta for the Dynamic Control Congress, Ottawa, 1999. This volume is divided into three parts: Optimal Control; Optimization Methods; and Applications. The Optimal Control part is concerned with com putational methods, modeling and nonlinear systems. Three computational methods for solving optimal control problems are presented: (i) a regularization method for computing ill-conditioned optimal control problems, (ii) penalty function methods that appropriately handle final state equality constraints, and (iii) a multilevel optimization approach for the numerical solution of opti mal control problems. In the fourth paper, the worst-case optimal regulation involving linear time varying systems is formulated as a minimax optimal con trol problem.

Time-Dependent Subdifferential Evolution Inclusions and Optimal Control

Time-Dependent Subdifferential Evolution Inclusions and Optimal Control PDF Author: Shouchuan Hu
Publisher: American Mathematical Soc.
ISBN: 082180779X
Category : Mathematics
Languages : en
Pages : 97

Get Book Here

Book Description
This volume studies multivalued evolution equations driven by time-dependent subdifferential operators and optimal control problems for such systems. The formulation is general enough to incorporate problems with time varying constraints. For evolution inclusions, existence relaxation and structural results for the solution set are proved. For optimal control problems, a general existence theory is developed, different forms of the relaxed problem are introduced and studied, well-posedness properties are investigated and the precise relation between the properties of relaxability and well-posedness is established. Various examples of systems which fit in the abstract framework are analysed.

Optimization and Control Techniques and Applications

Optimization and Control Techniques and Applications PDF Author: Honglei Xu
Publisher: Springer
ISBN: 3662434040
Category : Mathematics
Languages : en
Pages : 268

Get Book Here

Book Description
This book presents advances in state-of-the-art solution methods and their applications to real life practical problems in optimization, control and operations research. Contributions from world-class experts in the field are collated here in two parts, dealing first with optimization and control theory and then with techniques and applications. Topics covered in the first part include control theory on infinite dimensional Banach spaces, history-dependent inclusion and linear programming complexity theory. Chapters also explore the use of approximations of Hamilton-Jacobi-Bellman inequality for solving periodic optimization problems and look at multi-objective semi-infinite optimization problems and production planning problems. In the second part, the authors address techniques and applications of optimization and control in a variety of disciplines, such as chaos synchronization, facial expression recognition and dynamic input-output economic models. Other applications considered here include image retrieval, natural earth satellites orbital transfers, snap-back repellers and modern logistic systems. Readers will learn of advances in optimization, control and operations research, as well as potential new avenues of research and development. The book will appeal to scientific researchers, mathematicians and all specialists interested in the latest advances in optimization and control.

Handbook of Multivalued Analysis

Handbook of Multivalued Analysis PDF Author: Shouchuan Hu
Publisher: Springer Science & Business Media
ISBN: 1461546656
Category : Mathematics
Languages : en
Pages : 941

Get Book Here

Book Description
In volume I we developed the tools of "Multivalued Analysis. " In this volume we examine the applications. After all, the initial impetus for the development of the theory of set-valued functions came from its applications in areas such as control theory and mathematical economics. In fact, the needs of control theory, in particular the study of systems with a priori feedback, led to the systematic investigation of differential equations with a multi valued vector field (differential inclusions). For this reason, we start this volume with three chapters devoted to set-valued differential equations. However, in contrast to the existing books on the subject (i. e. J. -P. Aubin - A. Cellina: "Differential Inclusions," Springer-Verlag, 1983, and Deimling: "Multivalued Differential Equations," W. De Gruyter, 1992), here we focus on "Evolution Inclusions," which are evolution equations with multi valued terms. Evolution equations were raised to prominence with the development of the linear semigroup theory by Hille and Yosida initially, with subsequent im portant contributions by Kato, Phillips and Lions. This theory allowed a successful unified treatment of some apparently different classes of nonstationary linear par tial differential equations and linear functional equations. The needs of dealing with applied problems and the natural tendency to extend the linear theory to the nonlinear case led to the development of the nonlinear semigroup theory, which became a very effective tool in the analysis of broad classes of nonlinear evolution equations.

Theory of Fractional Evolution Equations

Theory of Fractional Evolution Equations PDF Author: Yong Zhou
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110769271
Category : Mathematics
Languages : en
Pages : 342

Get Book Here

Book Description
Fractional evolution equations provide a unifying framework to investigate wellposedness of complex systems with fractional order derivatives. This monograph presents the existence, attractivity, stability, periodic solutions and control theory for time fractional evolution equations. The book contains an up-to-date and comprehensive stuff on the topic.

Abstracts of Papers Presented to the American Mathematical Society

Abstracts of Papers Presented to the American Mathematical Society PDF Author: American Mathematical Society
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 718

Get Book Here

Book Description