Author: Victor Beresnevich Detta Dickinson Sanju Velani
Publisher: American Mathematical Soc.
ISBN: 9780821865682
Category : Diophantine approximation
Languages : en
Pages : 116
Book Description
Given a compact metric space $(\Omega,d)$ equipped with a non-atomic, probability measure $m$ and a positive decreasing function $\psi$, we consider a natural class of lim sup subsets $\Lambda(\psi)$ of $\Omega$. The classical lim sup set $W(\psi)$ of `$\psi$-approximable' numbers in the theory of metric Diophantine approximation fall within this class. We establish sufficient conditions (which are also necessary under some natural assumptions) for the $m$-measure of $\Lambda(\psi)$ to be either positive or full in $\Omega$ and for the Hausdorff $f$-measure to be infinite. The classical theorems of Khintchine-Groshev and Jarnik concerning $W(\psi)$ fall into our general framework. The main results provide a unifying treatment of numerous problems in metric Diophantine approximation including those for real, complex and $p$-adic fields associated with both independent and dependent quantities. Applications also include those to Kleinian groups and rational maps. Compared to previous works our framework allows us to successfully remove many unnecessary conditions and strengthen fundamental results such as Jarnik's theorem and the Baker-Schmidt theorem. In particular, the strengthening of Jarnik's theorem opens up the Duffin-Schaeffer conjecture for Hausdorff measures.
Measure Theoretic Laws for lim sup Sets
Author: Victor Beresnevich Detta Dickinson Sanju Velani
Publisher: American Mathematical Soc.
ISBN: 9780821865682
Category : Diophantine approximation
Languages : en
Pages : 116
Book Description
Given a compact metric space $(\Omega,d)$ equipped with a non-atomic, probability measure $m$ and a positive decreasing function $\psi$, we consider a natural class of lim sup subsets $\Lambda(\psi)$ of $\Omega$. The classical lim sup set $W(\psi)$ of `$\psi$-approximable' numbers in the theory of metric Diophantine approximation fall within this class. We establish sufficient conditions (which are also necessary under some natural assumptions) for the $m$-measure of $\Lambda(\psi)$ to be either positive or full in $\Omega$ and for the Hausdorff $f$-measure to be infinite. The classical theorems of Khintchine-Groshev and Jarnik concerning $W(\psi)$ fall into our general framework. The main results provide a unifying treatment of numerous problems in metric Diophantine approximation including those for real, complex and $p$-adic fields associated with both independent and dependent quantities. Applications also include those to Kleinian groups and rational maps. Compared to previous works our framework allows us to successfully remove many unnecessary conditions and strengthen fundamental results such as Jarnik's theorem and the Baker-Schmidt theorem. In particular, the strengthening of Jarnik's theorem opens up the Duffin-Schaeffer conjecture for Hausdorff measures.
Publisher: American Mathematical Soc.
ISBN: 9780821865682
Category : Diophantine approximation
Languages : en
Pages : 116
Book Description
Given a compact metric space $(\Omega,d)$ equipped with a non-atomic, probability measure $m$ and a positive decreasing function $\psi$, we consider a natural class of lim sup subsets $\Lambda(\psi)$ of $\Omega$. The classical lim sup set $W(\psi)$ of `$\psi$-approximable' numbers in the theory of metric Diophantine approximation fall within this class. We establish sufficient conditions (which are also necessary under some natural assumptions) for the $m$-measure of $\Lambda(\psi)$ to be either positive or full in $\Omega$ and for the Hausdorff $f$-measure to be infinite. The classical theorems of Khintchine-Groshev and Jarnik concerning $W(\psi)$ fall into our general framework. The main results provide a unifying treatment of numerous problems in metric Diophantine approximation including those for real, complex and $p$-adic fields associated with both independent and dependent quantities. Applications also include those to Kleinian groups and rational maps. Compared to previous works our framework allows us to successfully remove many unnecessary conditions and strengthen fundamental results such as Jarnik's theorem and the Baker-Schmidt theorem. In particular, the strengthening of Jarnik's theorem opens up the Duffin-Schaeffer conjecture for Hausdorff measures.
Measure Theoretic Laws for lim sup Sets
Author: Victor Beresnevich
Publisher: American Mathematical Soc.
ISBN: 082183827X
Category : Mathematics
Languages : en
Pages : 110
Book Description
Given a compact metric space $(\Omega,d)$ equipped with a non-atomic, probability measure $m$ and a positive decreasing function $\psi$, we consider a natural class of lim sup subsets $\Lambda(\psi)$ of $\Omega$. The classical lim sup set $W(\psi)$ of `$\p$-approximable' numbers in the theory of metric Diophantine approximation fall within this class. We establish sufficient conditions (which are also necessary under some natural assumptions) for the $m$-measure of $\Lambda(\psi)$to be either positive or full in $\Omega$ and for the Hausdorff $f$-measure to be infinite. The classical theorems of Khintchine-Groshev and Jarník concerning $W(\psi)$ fall into our general framework. The main results provide a unifying treatment of numerous problems in metric Diophantineapproximation including those for real, complex and $p$-adic fields associated with both independent and dependent quantities. Applications also include those to Kleinian groups and rational maps. Compared to previous works our framework allows us to successfully remove many unnecessary conditions and strengthen fundamental results such as Jarník's theorem and the Baker-Schmidt theorem. In particular, the strengthening of Jarník's theorem opens up the Duffin-Schaeffer conjecturefor Hausdorff measures.
Publisher: American Mathematical Soc.
ISBN: 082183827X
Category : Mathematics
Languages : en
Pages : 110
Book Description
Given a compact metric space $(\Omega,d)$ equipped with a non-atomic, probability measure $m$ and a positive decreasing function $\psi$, we consider a natural class of lim sup subsets $\Lambda(\psi)$ of $\Omega$. The classical lim sup set $W(\psi)$ of `$\p$-approximable' numbers in the theory of metric Diophantine approximation fall within this class. We establish sufficient conditions (which are also necessary under some natural assumptions) for the $m$-measure of $\Lambda(\psi)$to be either positive or full in $\Omega$ and for the Hausdorff $f$-measure to be infinite. The classical theorems of Khintchine-Groshev and Jarník concerning $W(\psi)$ fall into our general framework. The main results provide a unifying treatment of numerous problems in metric Diophantineapproximation including those for real, complex and $p$-adic fields associated with both independent and dependent quantities. Applications also include those to Kleinian groups and rational maps. Compared to previous works our framework allows us to successfully remove many unnecessary conditions and strengthen fundamental results such as Jarník's theorem and the Baker-Schmidt theorem. In particular, the strengthening of Jarník's theorem opens up the Duffin-Schaeffer conjecturefor Hausdorff measures.
Diophantine Approximation and the Geometry of Limit Sets in Gromov Hyperbolic Metric Spaces
Author: Lior Fishman
Publisher: American Mathematical Soc.
ISBN: 1470428865
Category : Mathematics
Languages : en
Pages : 150
Book Description
In this paper, the authors provide a complete theory of Diophantine approximation in the limit set of a group acting on a Gromov hyperbolic metric space. This summarizes and completes a long line of results by many authors, from Patterson's classic 1976 paper to more recent results of Hersonsky and Paulin (2002, 2004, 2007). The authors consider concrete examples of situations which have not been considered before. These include geometrically infinite Kleinian groups, geometrically finite Kleinian groups where the approximating point is not a fixed point of any element of the group, and groups acting on infinite-dimensional hyperbolic space. Moreover, in addition to providing much greater generality than any prior work of which the authors are aware, the results also give new insight into the nature of the connection between Diophantine approximation and the geometry of the limit set within which it takes place. Two results are also contained here which are purely geometric: a generalization of a theorem of Bishop and Jones (1997) to Gromov hyperbolic metric spaces, and a proof that the uniformly radial limit set of a group acting on a proper geodesic Gromov hyperbolic metric space has zero Patterson–Sullivan measure unless the group is quasiconvex-cocompact. The latter is an application of a Diophantine theorem.
Publisher: American Mathematical Soc.
ISBN: 1470428865
Category : Mathematics
Languages : en
Pages : 150
Book Description
In this paper, the authors provide a complete theory of Diophantine approximation in the limit set of a group acting on a Gromov hyperbolic metric space. This summarizes and completes a long line of results by many authors, from Patterson's classic 1976 paper to more recent results of Hersonsky and Paulin (2002, 2004, 2007). The authors consider concrete examples of situations which have not been considered before. These include geometrically infinite Kleinian groups, geometrically finite Kleinian groups where the approximating point is not a fixed point of any element of the group, and groups acting on infinite-dimensional hyperbolic space. Moreover, in addition to providing much greater generality than any prior work of which the authors are aware, the results also give new insight into the nature of the connection between Diophantine approximation and the geometry of the limit set within which it takes place. Two results are also contained here which are purely geometric: a generalization of a theorem of Bishop and Jones (1997) to Gromov hyperbolic metric spaces, and a proof that the uniformly radial limit set of a group acting on a proper geodesic Gromov hyperbolic metric space has zero Patterson–Sullivan measure unless the group is quasiconvex-cocompact. The latter is an application of a Diophantine theorem.
The Hilbert Function of a Level Algebra
Author: A. V. Geramita
Publisher: American Mathematical Soc.
ISBN: 0821839403
Category : Mathematics
Languages : en
Pages : 154
Book Description
Let $R$ be a polynomial ring over an algebraically closed field and let $A$ be a standard graded Cohen-Macaulay quotient of $R$. The authors state that $A$ is a level algebra if the last module in the minimal free resolution of $A$ (as $R$-module) is of the form $R(-s)a$, where $s$ and $a$ are positive integers. When $a=1$ these are also known as Gorenstein algebras. The basic question addressed in this paper is: What can be the Hilbert Function of a level algebra? The authors consider the question in several particular cases, e.g., when $A$ is an Artinian algebra, or when $A$ is the homogeneous coordinate ring of a reduced set of points, or when $A$ satisfies the Weak Lefschetz Property. The authors give new methods for showing that certain functions are NOT possible as the Hilbert function of a level algebra and also give new methods to construct level algebras. In a (rather long) appendix, the authors apply their results to give complete lists of all possible Hilbert functions in the case that the codimension of $A = 3$, $s$ is small and $a$ takes on certain fixed values.
Publisher: American Mathematical Soc.
ISBN: 0821839403
Category : Mathematics
Languages : en
Pages : 154
Book Description
Let $R$ be a polynomial ring over an algebraically closed field and let $A$ be a standard graded Cohen-Macaulay quotient of $R$. The authors state that $A$ is a level algebra if the last module in the minimal free resolution of $A$ (as $R$-module) is of the form $R(-s)a$, where $s$ and $a$ are positive integers. When $a=1$ these are also known as Gorenstein algebras. The basic question addressed in this paper is: What can be the Hilbert Function of a level algebra? The authors consider the question in several particular cases, e.g., when $A$ is an Artinian algebra, or when $A$ is the homogeneous coordinate ring of a reduced set of points, or when $A$ satisfies the Weak Lefschetz Property. The authors give new methods for showing that certain functions are NOT possible as the Hilbert function of a level algebra and also give new methods to construct level algebras. In a (rather long) appendix, the authors apply their results to give complete lists of all possible Hilbert functions in the case that the codimension of $A = 3$, $s$ is small and $a$ takes on certain fixed values.
Betti Numbers of the Moduli Space of Rank 3 Parabolic Higgs Bundles
Author: Oscar García-Prada
Publisher: American Mathematical Soc.
ISBN: 0821839721
Category : Mathematics
Languages : en
Pages : 96
Book Description
Parabolic Higgs bundles on a Riemann surface are of interest for many reasons, one of them being their importance in the study of representations of the fundamental group of the punctured surface in the complex general linear group. in this paper the authors calculate the Betti numbers of the moduli space of rank 3 parabolic Higgs bundles with fixed and non-fixed determinant, using Morse theory. A key point is that certain critical submanifolds of the Morse function can be identified with moduli spaces of parabolic triples. These moduli spaces come in families depending on a real parameter and the authors carry out a careful analysis of them by studying their variation with this parameter. Thus the authors obtain in particular information about the topology of the moduli spaces of parabolic triples for the value of the parameter relevant to the study of parabolic Higgs bundles. The remaining critical submanifolds are also described: one of them is the moduli space of parabolic bundles, while the rem
Publisher: American Mathematical Soc.
ISBN: 0821839721
Category : Mathematics
Languages : en
Pages : 96
Book Description
Parabolic Higgs bundles on a Riemann surface are of interest for many reasons, one of them being their importance in the study of representations of the fundamental group of the punctured surface in the complex general linear group. in this paper the authors calculate the Betti numbers of the moduli space of rank 3 parabolic Higgs bundles with fixed and non-fixed determinant, using Morse theory. A key point is that certain critical submanifolds of the Morse function can be identified with moduli spaces of parabolic triples. These moduli spaces come in families depending on a real parameter and the authors carry out a careful analysis of them by studying their variation with this parameter. Thus the authors obtain in particular information about the topology of the moduli spaces of parabolic triples for the value of the parameter relevant to the study of parabolic Higgs bundles. The remaining critical submanifolds are also described: one of them is the moduli space of parabolic bundles, while the rem
Equivalences of Classifying Spaces Completed at the Prime Two
Author: Robert Oliver
Publisher: American Mathematical Soc.
ISBN: 0821838288
Category : Mathematics
Languages : en
Pages : 116
Book Description
We prove here the Martino-Priddy conjecture at the prime $2$: the $2$-completions of the classifying spaces of two finite groups $G$ and $G'$ are homotopy equivalent if and only if there is an isomorphism between their Sylow $2$-subgroups which preserves fusion. This is a consequence of a technical algebraic result, which says that for a finite group $G$, the second higher derived functor of the inverse limit vanishes for a certain functor $\mathcal{Z}_G$ on the $2$-subgroup orbit category of $G$. The proof of this result uses the classification theorem for finite simple groups.
Publisher: American Mathematical Soc.
ISBN: 0821838288
Category : Mathematics
Languages : en
Pages : 116
Book Description
We prove here the Martino-Priddy conjecture at the prime $2$: the $2$-completions of the classifying spaces of two finite groups $G$ and $G'$ are homotopy equivalent if and only if there is an isomorphism between their Sylow $2$-subgroups which preserves fusion. This is a consequence of a technical algebraic result, which says that for a finite group $G$, the second higher derived functor of the inverse limit vanishes for a certain functor $\mathcal{Z}_G$ on the $2$-subgroup orbit category of $G$. The proof of this result uses the classification theorem for finite simple groups.
A Categorical Approach to Imprimitivity Theorems for $C^*$-Dynamical Systems
Author: Siegfried Echterhoff
Publisher: American Mathematical Soc.
ISBN: 0821838571
Category : Mathematics
Languages : en
Pages : 186
Book Description
It has become apparent that studying the representation theory and structure of crossed-product C*-algebras requires imprimitivity theorems. This monograph shows that the imprimitivity theorem for reduced algebras, Green's imprimitivity theorem for actions of groups, and Mansfield's imprimitivity theorem for coactions of groups can all be understoo
Publisher: American Mathematical Soc.
ISBN: 0821838571
Category : Mathematics
Languages : en
Pages : 186
Book Description
It has become apparent that studying the representation theory and structure of crossed-product C*-algebras requires imprimitivity theorems. This monograph shows that the imprimitivity theorem for reduced algebras, Green's imprimitivity theorem for actions of groups, and Mansfield's imprimitivity theorem for coactions of groups can all be understoo
A Sharp Threshold for Random Graphs with a Monochromatic Triangle in Every Edge Coloring
Author: Ehud Friedgut
Publisher: American Mathematical Soc.
ISBN: 0821838253
Category : Mathematics
Languages : en
Pages : 80
Book Description
Let $\cal{R}$ be the set of all finite graphs $G$ with the Ramsey property that every coloring of the edges of $G$ by two colors yields a monochromatic triangle. In this paper the authors establish a sharp threshold for random graphs with this property. Let $G(n, p)$ be the random graph on $n$ vertices with edge probability $p$. The authors prove that there exists a function $\widehat c=\widehat c(n)=\Theta(1)$ such that for any $\varepsilon > 0$, as $n$ tends to infinity, $Pr\left[G(n, (1-\varepsilon)\widehat c/\sqrt{n}) \in \cal{R} \right] \rightarrow 0$ and $Pr \left[ G(n, (1]\varepsilon)\widehat c/\sqrt{n}) \in \cal{R}\ \right] \rightarrow 1.$. A crucial tool that is used in the proof and is of independent interest is a generalization of Szemeredi's Regularity Lemma to a certain hypergraph setti
Publisher: American Mathematical Soc.
ISBN: 0821838253
Category : Mathematics
Languages : en
Pages : 80
Book Description
Let $\cal{R}$ be the set of all finite graphs $G$ with the Ramsey property that every coloring of the edges of $G$ by two colors yields a monochromatic triangle. In this paper the authors establish a sharp threshold for random graphs with this property. Let $G(n, p)$ be the random graph on $n$ vertices with edge probability $p$. The authors prove that there exists a function $\widehat c=\widehat c(n)=\Theta(1)$ such that for any $\varepsilon > 0$, as $n$ tends to infinity, $Pr\left[G(n, (1-\varepsilon)\widehat c/\sqrt{n}) \in \cal{R} \right] \rightarrow 0$ and $Pr \left[ G(n, (1]\varepsilon)\widehat c/\sqrt{n}) \in \cal{R}\ \right] \rightarrow 1.$. A crucial tool that is used in the proof and is of independent interest is a generalization of Szemeredi's Regularity Lemma to a certain hypergraph setti
On Necessary and Sufficient Conditions for $L^p$-Estimates of Riesz Transforms Associated to Elliptic Operators on $\mathbb {R}^n$ and Related Estimates
Author: Pascal Auscher
Publisher: American Mathematical Soc.
ISBN: 0821839411
Category : Mathematics
Languages : en
Pages : 102
Book Description
This memoir focuses on $Lp$ estimates for objects associated to elliptic operators in divergence form: its semigroup, the gradient of the semigroup, functional calculus, square functions and Riesz transforms. The author introduces four critical numbers associated to the semigroup and its gradient that completely rule the ranges of exponents for the $Lp$ estimates. It appears that the case $p2$ which is new. The author thus recovers in a unified and coherent way many $Lp$ estimates and gives further applications. The key tools from harmonic analysis are two criteria for $Lp$ boundedness, one for $p2$ but in ranges different from the usual intervals $(1,2)$ and $(2,\infty)$.
Publisher: American Mathematical Soc.
ISBN: 0821839411
Category : Mathematics
Languages : en
Pages : 102
Book Description
This memoir focuses on $Lp$ estimates for objects associated to elliptic operators in divergence form: its semigroup, the gradient of the semigroup, functional calculus, square functions and Riesz transforms. The author introduces four critical numbers associated to the semigroup and its gradient that completely rule the ranges of exponents for the $Lp$ estimates. It appears that the case $p2$ which is new. The author thus recovers in a unified and coherent way many $Lp$ estimates and gives further applications. The key tools from harmonic analysis are two criteria for $Lp$ boundedness, one for $p2$ but in ranges different from the usual intervals $(1,2)$ and $(2,\infty)$.
The Role of True Finiteness in the Admissible Recursively Enumerable Degrees
Author: Noam Greenberg
Publisher: American Mathematical Soc.
ISBN: 0821838857
Category : Mathematics
Languages : en
Pages : 114
Book Description
When attempting to generalize recursion theory to admissible ordinals, it may seem as if all classical priority constructions can be lifted to any admissible ordinal satisfying a sufficiently strong fragment of the replacement scheme. We show, however, that this is not always the case. In fact, there are some constructions which make an essential use of the notion of finiteness which cannot be replaced by the generalized notion of $\alpha$-finiteness. As examples we discuss bothcodings of models of arithmetic into the recursively enumerable degrees, and non-distributive lattice embeddings into these degrees. We show that if an admissible ordinal $\alpha$ is effectively close to $\omega$ (where this closeness can be measured by size or by cofinality) then such constructions maybe performed in the $\alpha$-r.e. degrees, but otherwise they fail. The results of these constructions can be expressed in the first-order language of partially ordered sets, and so these results also show that there are natu
Publisher: American Mathematical Soc.
ISBN: 0821838857
Category : Mathematics
Languages : en
Pages : 114
Book Description
When attempting to generalize recursion theory to admissible ordinals, it may seem as if all classical priority constructions can be lifted to any admissible ordinal satisfying a sufficiently strong fragment of the replacement scheme. We show, however, that this is not always the case. In fact, there are some constructions which make an essential use of the notion of finiteness which cannot be replaced by the generalized notion of $\alpha$-finiteness. As examples we discuss bothcodings of models of arithmetic into the recursively enumerable degrees, and non-distributive lattice embeddings into these degrees. We show that if an admissible ordinal $\alpha$ is effectively close to $\omega$ (where this closeness can be measured by size or by cofinality) then such constructions maybe performed in the $\alpha$-r.e. degrees, but otherwise they fail. The results of these constructions can be expressed in the first-order language of partially ordered sets, and so these results also show that there are natu