Author: Ivan Niven
Publisher: Cambridge University Press
ISBN: 9780883853061
Category : Mathematics
Languages : en
Pages : 328
Book Description
Describes techniques for solving problems in maxima and minima other than the methods of calculus.
Maxima and Minima Without Calculus
Author: Ivan Niven
Publisher: Cambridge University Press
ISBN: 9780883853061
Category : Mathematics
Languages : en
Pages : 328
Book Description
Describes techniques for solving problems in maxima and minima other than the methods of calculus.
Publisher: Cambridge University Press
ISBN: 9780883853061
Category : Mathematics
Languages : en
Pages : 328
Book Description
Describes techniques for solving problems in maxima and minima other than the methods of calculus.
Maxima and Minima with and Without Calculus
Author: Lester Henry Lange
Publisher:
ISBN:
Category : Maxima and minima
Languages : en
Pages : 162
Book Description
Publisher:
ISBN:
Category : Maxima and minima
Languages : en
Pages : 162
Book Description
Conics
Author: Keith Kendig
Publisher: American Mathematical Soc.
ISBN: 1470456834
Category : Mathematics
Languages : en
Pages : 428
Book Description
This book engages the reader in a journey of discovery through a spirited discussion among three characters: philosopher, teacher, and student. Throughout the book, philosopher pursues his dream of a unified theory of conics, where exceptions are banished. With a helpful teacher and examplehungry student, the trio soon finds that conics reveal much of their beauty when viewed over the complex numbers. It is profusely illustrated with pictures, workedout examples, and a CD containing 36 applets. Conics is written in an easy, conversational style, and many historical tidbits and other points of interest are scattered throughout the text. Many students can selfstudy the book without outside help. This book is ideal for anyone having a little exposure to linear algebra and complex numbers.
Publisher: American Mathematical Soc.
ISBN: 1470456834
Category : Mathematics
Languages : en
Pages : 428
Book Description
This book engages the reader in a journey of discovery through a spirited discussion among three characters: philosopher, teacher, and student. Throughout the book, philosopher pursues his dream of a unified theory of conics, where exceptions are banished. With a helpful teacher and examplehungry student, the trio soon finds that conics reveal much of their beauty when viewed over the complex numbers. It is profusely illustrated with pictures, workedout examples, and a CD containing 36 applets. Conics is written in an easy, conversational style, and many historical tidbits and other points of interest are scattered throughout the text. Many students can selfstudy the book without outside help. This book is ideal for anyone having a little exposure to linear algebra and complex numbers.
Geometric Problems on Maxima and Minima
Author: Titu Andreescu
Publisher: Springer Science & Business Media
ISBN: 0817644733
Category : Mathematics
Languages : en
Pages : 273
Book Description
Presents hundreds of extreme value problems, examples, and solutions primarily through Euclidean geometry Unified approach to the subject, with emphasis on geometric, algebraic, analytic, and combinatorial reasoning Applications to physics, engineering, and economics Ideal for use at the junior and senior undergraduate level, with wide appeal to students, teachers, professional mathematicians, and puzzle enthusiasts
Publisher: Springer Science & Business Media
ISBN: 0817644733
Category : Mathematics
Languages : en
Pages : 273
Book Description
Presents hundreds of extreme value problems, examples, and solutions primarily through Euclidean geometry Unified approach to the subject, with emphasis on geometric, algebraic, analytic, and combinatorial reasoning Applications to physics, engineering, and economics Ideal for use at the junior and senior undergraduate level, with wide appeal to students, teachers, professional mathematicians, and puzzle enthusiasts
Theory of Maxima and Minima
Author: Harris Hancock
Publisher:
ISBN:
Category : Maxima and minima
Languages : en
Pages : 218
Book Description
Publisher:
ISBN:
Category : Maxima and minima
Languages : en
Pages : 218
Book Description
Introduction to Applied Linear Algebra
Author: Stephen Boyd
Publisher: Cambridge University Press
ISBN: 1316518965
Category : Business & Economics
Languages : en
Pages : 477
Book Description
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
Publisher: Cambridge University Press
ISBN: 1316518965
Category : Business & Economics
Languages : en
Pages : 477
Book Description
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
Old and New Unsolved Problems in Plane Geometry and Number Theory
Author: Victor Klee
Publisher: American Mathematical Soc.
ISBN: 1470454610
Category : Education
Languages : en
Pages : 352
Book Description
Victor Klee and Stan Wagon discuss some of the unsolved problems in number theory and geometry, many of which can be understood by readers with a very modest mathematical background. The presentation is organized around 24 central problems, many of which are accompanied by other, related problems. The authors place each problem in its historical and mathematical context, and the discussion is at the level of undergraduate mathematics. Each problem section is presented in two parts. The first gives an elementary overview discussing the history and both the solved and unsolved variants of the problem. The second part contains more details, including a few proofs of related results, a wider and deeper survey of what is known about the problem and its relatives, and a large collection of references. Both parts contain exercises, with solutions. The book is aimed at both teachers and students of mathematics who want to know more about famous unsolved problems.
Publisher: American Mathematical Soc.
ISBN: 1470454610
Category : Education
Languages : en
Pages : 352
Book Description
Victor Klee and Stan Wagon discuss some of the unsolved problems in number theory and geometry, many of which can be understood by readers with a very modest mathematical background. The presentation is organized around 24 central problems, many of which are accompanied by other, related problems. The authors place each problem in its historical and mathematical context, and the discussion is at the level of undergraduate mathematics. Each problem section is presented in two parts. The first gives an elementary overview discussing the history and both the solved and unsolved variants of the problem. The second part contains more details, including a few proofs of related results, a wider and deeper survey of what is known about the problem and its relatives, and a large collection of references. Both parts contain exercises, with solutions. The book is aimed at both teachers and students of mathematics who want to know more about famous unsolved problems.
Proofs that Really Count
Author: Arthur T. Benjamin
Publisher: American Mathematical Society
ISBN: 1470472597
Category : Mathematics
Languages : en
Pages : 210
Book Description
Mathematics is the science of patterns, and mathematicians attempt to understand these patterns and discover new ones using a variety of tools. In Proofs That Really Count, award-winning math professors Arthur Benjamin and Jennifer Quinn demonstrate that many number patterns, even very complex ones, can be understood by simple counting arguments. The book emphasizes numbers that are often not thought of as numbers that count: Fibonacci Numbers, Lucas Numbers, Continued Fractions, and Harmonic Numbers, to name a few. Numerous hints and references are given for all chapter exercises and many chapters end with a list of identities in need of combinatorial proof. The extensive appendix of identities will be a valuable resource. This book should appeal to readers of all levels, from high school math students to professional mathematicians.
Publisher: American Mathematical Society
ISBN: 1470472597
Category : Mathematics
Languages : en
Pages : 210
Book Description
Mathematics is the science of patterns, and mathematicians attempt to understand these patterns and discover new ones using a variety of tools. In Proofs That Really Count, award-winning math professors Arthur Benjamin and Jennifer Quinn demonstrate that many number patterns, even very complex ones, can be understood by simple counting arguments. The book emphasizes numbers that are often not thought of as numbers that count: Fibonacci Numbers, Lucas Numbers, Continued Fractions, and Harmonic Numbers, to name a few. Numerous hints and references are given for all chapter exercises and many chapters end with a list of identities in need of combinatorial proof. The extensive appendix of identities will be a valuable resource. This book should appeal to readers of all levels, from high school math students to professional mathematicians.
A Guide to Elementary Number Theory
Author: Underwood Dudley
Publisher: American Mathematical Soc.
ISBN: 0883859181
Category : Mathematics
Languages : en
Pages : 153
Book Description
An introductory guide to elementary number theory for advanced undergraduates and graduates.
Publisher: American Mathematical Soc.
ISBN: 0883859181
Category : Mathematics
Languages : en
Pages : 153
Book Description
An introductory guide to elementary number theory for advanced undergraduates and graduates.
A Guide to Advanced Real Analysis
Author: G. B. Folland
Publisher: American Mathematical Soc.
ISBN: 0883859157
Category : Education
Languages : en
Pages : 119
Book Description
A concise guide to the core material in a graduate level real analysis course.
Publisher: American Mathematical Soc.
ISBN: 0883859157
Category : Education
Languages : en
Pages : 119
Book Description
A concise guide to the core material in a graduate level real analysis course.