Author: Feliks Ruvimovich Gantmakher
Publisher:
ISBN:
Category : Matrices
Languages : en
Pages : 296
Book Description
The Theory of Matrices
Author: Feliks Ruvimovich Gantmakher
Publisher:
ISBN:
Category : Matrices
Languages : en
Pages : 296
Book Description
Publisher:
ISBN:
Category : Matrices
Languages : en
Pages : 296
Book Description
Applications of the Theory of Matrices
Author: F. R. Gantmacher
Publisher: Courier Corporation
ISBN: 0486445542
Category : Mathematics
Languages : en
Pages : 336
Book Description
The breadth of matrix theory's applications is reflected by this volume, which features material of interest to applied mathematicians as well as to control engineers studying stability of a servo-mechanism and numerical analysts evaluating the roots of a polynomial. Starting with a survey of complex symmetric, antisymmetric, and orthogonal matrices, the text advances to explorations of singular bundles of matrices and matrices with nonnegative elements. Applied mathematicians will take particular note of the full and readable chapter on applications of matrix theory to the study of systems of linear differential equations, and the text concludes with an exposition on the Routh-Hurwitz problem plus several helpful appendixes. 1959 edition.
Publisher: Courier Corporation
ISBN: 0486445542
Category : Mathematics
Languages : en
Pages : 336
Book Description
The breadth of matrix theory's applications is reflected by this volume, which features material of interest to applied mathematicians as well as to control engineers studying stability of a servo-mechanism and numerical analysts evaluating the roots of a polynomial. Starting with a survey of complex symmetric, antisymmetric, and orthogonal matrices, the text advances to explorations of singular bundles of matrices and matrices with nonnegative elements. Applied mathematicians will take particular note of the full and readable chapter on applications of matrix theory to the study of systems of linear differential equations, and the text concludes with an exposition on the Routh-Hurwitz problem plus several helpful appendixes. 1959 edition.
The Mathematics of Matrices
Author: Philip J. Davis
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 376
Book Description
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 376
Book Description
Matrix Computations and Semiseparable Matrices
Author: Raf Vandebril
Publisher: JHU Press
ISBN: 0801896800
Category : Mathematics
Languages : en
Pages : 516
Book Description
The general properties and mathematical structures of semiseparable matrices were presented in volume 1 of Matrix Computations and Semiseparable Matrices. In volume 2, Raf Vandebril, Marc Van Barel, and Nicola Mastronardi discuss the theory of structured eigenvalue and singular value computations for semiseparable matrices. These matrices have hidden properties that allow the development of efficient methods and algorithms to accurately compute the matrix eigenvalues. This thorough analysis of semiseparable matrices explains their theoretical underpinnings and contains a wealth of information on implementing them in practice. Many of the routines featured are coded in Matlab and can be downloaded from the Web for further exploration.
Publisher: JHU Press
ISBN: 0801896800
Category : Mathematics
Languages : en
Pages : 516
Book Description
The general properties and mathematical structures of semiseparable matrices were presented in volume 1 of Matrix Computations and Semiseparable Matrices. In volume 2, Raf Vandebril, Marc Van Barel, and Nicola Mastronardi discuss the theory of structured eigenvalue and singular value computations for semiseparable matrices. These matrices have hidden properties that allow the development of efficient methods and algorithms to accurately compute the matrix eigenvalues. This thorough analysis of semiseparable matrices explains their theoretical underpinnings and contains a wealth of information on implementing them in practice. Many of the routines featured are coded in Matlab and can be downloaded from the Web for further exploration.
Introduction to Applied Linear Algebra
Author: Stephen Boyd
Publisher: Cambridge University Press
ISBN: 1316518965
Category : Business & Economics
Languages : en
Pages : 477
Book Description
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
Publisher: Cambridge University Press
ISBN: 1316518965
Category : Business & Economics
Languages : en
Pages : 477
Book Description
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
Vector Spaces and Matrices
Author: Robert M. Thrall
Publisher: Courier Corporation
ISBN: 0486321053
Category : Mathematics
Languages : en
Pages : 340
Book Description
Students receive the benefits of axiom-based mathematical reasoning as well as a grasp of concrete formulations. Suitable as a primary or supplementary text for college-level courses in linear algebra. 1957 edition.
Publisher: Courier Corporation
ISBN: 0486321053
Category : Mathematics
Languages : en
Pages : 340
Book Description
Students receive the benefits of axiom-based mathematical reasoning as well as a grasp of concrete formulations. Suitable as a primary or supplementary text for college-level courses in linear algebra. 1957 edition.
Matrices and Linear Algebra
Author: Hans Schneider
Publisher: Courier Corporation
ISBN: 0486139301
Category : Mathematics
Languages : en
Pages : 430
Book Description
Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it. This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related topics such as determinants, eigenvalues, and differential equations. Table of Contents: l. The Algebra of Matrices 2. Linear Equations 3. Vector Spaces 4. Determinants 5. Linear Transformations 6. Eigenvalues and Eigenvectors 7. Inner Product Spaces 8. Applications to Differential Equations For the second edition, the authors added several exercises in each chapter and a brand new section in Chapter 7. The exercises, which are both true-false and multiple-choice, will enable the student to test his grasp of the definitions and theorems in the chapter. The new section in Chapter 7 illustrates the geometric content of Sylvester's Theorem by means of conic sections and quadric surfaces. 6 line drawings. lndex. Two prefaces. Answer section.
Publisher: Courier Corporation
ISBN: 0486139301
Category : Mathematics
Languages : en
Pages : 430
Book Description
Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it. This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related topics such as determinants, eigenvalues, and differential equations. Table of Contents: l. The Algebra of Matrices 2. Linear Equations 3. Vector Spaces 4. Determinants 5. Linear Transformations 6. Eigenvalues and Eigenvectors 7. Inner Product Spaces 8. Applications to Differential Equations For the second edition, the authors added several exercises in each chapter and a brand new section in Chapter 7. The exercises, which are both true-false and multiple-choice, will enable the student to test his grasp of the definitions and theorems in the chapter. The new section in Chapter 7 illustrates the geometric content of Sylvester's Theorem by means of conic sections and quadric surfaces. 6 line drawings. lndex. Two prefaces. Answer section.
Matrices, Moments and Quadrature with Applications
Author: Gene H. Golub
Publisher: Princeton University Press
ISBN: 1400833884
Category : Mathematics
Languages : en
Pages : 376
Book Description
This computationally oriented book describes and explains the mathematical relationships among matrices, moments, orthogonal polynomials, quadrature rules, and the Lanczos and conjugate gradient algorithms. The book bridges different mathematical areas to obtain algorithms to estimate bilinear forms involving two vectors and a function of the matrix. The first part of the book provides the necessary mathematical background and explains the theory. The second part describes the applications and gives numerical examples of the algorithms and techniques developed in the first part. Applications addressed in the book include computing elements of functions of matrices; obtaining estimates of the error norm in iterative methods for solving linear systems and computing parameters in least squares and total least squares; and solving ill-posed problems using Tikhonov regularization. This book will interest researchers in numerical linear algebra and matrix computations, as well as scientists and engineers working on problems involving computation of bilinear forms.
Publisher: Princeton University Press
ISBN: 1400833884
Category : Mathematics
Languages : en
Pages : 376
Book Description
This computationally oriented book describes and explains the mathematical relationships among matrices, moments, orthogonal polynomials, quadrature rules, and the Lanczos and conjugate gradient algorithms. The book bridges different mathematical areas to obtain algorithms to estimate bilinear forms involving two vectors and a function of the matrix. The first part of the book provides the necessary mathematical background and explains the theory. The second part describes the applications and gives numerical examples of the algorithms and techniques developed in the first part. Applications addressed in the book include computing elements of functions of matrices; obtaining estimates of the error norm in iterative methods for solving linear systems and computing parameters in least squares and total least squares; and solving ill-posed problems using Tikhonov regularization. This book will interest researchers in numerical linear algebra and matrix computations, as well as scientists and engineers working on problems involving computation of bilinear forms.
No Bullshit Guide to Linear Algebra
Author: Ivan Savov
Publisher:
ISBN: 9780992001025
Category : MATHEMATICS
Languages : en
Pages : 596
Book Description
This textbook covers the material for an undergraduate linear algebra course: vectors, matrices, linear transformations, computational techniques, geometric constructions, and theoretical foundations. The explanations are given in an informal conversational tone. The book also contains 100+ problems and exercises with answers and solutions. A special feature of this textbook is the prerequisites chapter that covers topics from high school math, which are necessary for learning linear algebra. The presence of this chapter makes the book suitable for beginners and the general audience-readers need not be math experts to read this book. Another unique aspect of the book are the applications chapters (Ch 7, 8, and 9) that discuss applications of linear algebra to engineering, computer science, economics, chemistry, machine learning, and even quantum mechanics.
Publisher:
ISBN: 9780992001025
Category : MATHEMATICS
Languages : en
Pages : 596
Book Description
This textbook covers the material for an undergraduate linear algebra course: vectors, matrices, linear transformations, computational techniques, geometric constructions, and theoretical foundations. The explanations are given in an informal conversational tone. The book also contains 100+ problems and exercises with answers and solutions. A special feature of this textbook is the prerequisites chapter that covers topics from high school math, which are necessary for learning linear algebra. The presence of this chapter makes the book suitable for beginners and the general audience-readers need not be math experts to read this book. Another unique aspect of the book are the applications chapters (Ch 7, 8, and 9) that discuss applications of linear algebra to engineering, computer science, economics, chemistry, machine learning, and even quantum mechanics.
The Theory of Matrices
Author: Peter Lancaster
Publisher: Academic Press
ISBN: 9780124355606
Category : Computers
Languages : en
Pages : 590
Book Description
Matrix algebra; Determinants, inverse matrices, and rank; Linear, euclidean, and unitary spaces; Linear transformations and matrices; Linear transformations in unitary spaces and simple matrices; The jordan canonical form: a geometric approach; Matrix polynomials and normal forms; The variational method; Functions of matrices; Norms and bounds for eigenvalues; Perturbation theory; Linear matrices equations and generalized inverses; Stability problems; Matrix polynomials; Nonnegative matrices.
Publisher: Academic Press
ISBN: 9780124355606
Category : Computers
Languages : en
Pages : 590
Book Description
Matrix algebra; Determinants, inverse matrices, and rank; Linear, euclidean, and unitary spaces; Linear transformations and matrices; Linear transformations in unitary spaces and simple matrices; The jordan canonical form: a geometric approach; Matrix polynomials and normal forms; The variational method; Functions of matrices; Norms and bounds for eigenvalues; Perturbation theory; Linear matrices equations and generalized inverses; Stability problems; Matrix polynomials; Nonnegative matrices.