Mathematics in Physics Education

Mathematics in Physics Education PDF Author: Gesche Pospiech
Publisher: Springer
ISBN: 3030046273
Category : Science
Languages : en
Pages : 383

Get Book Here

Book Description
This book is about mathematics in physics education, the difficulties students have in learning physics, and the way in which mathematization can help to improve physics teaching and learning. The book brings together different teaching and learning perspectives, and addresses both fundamental considerations and practical aspects. Divided into four parts, the book starts out with theoretical viewpoints that enlighten the interplay of physics and mathematics also including historical developments. The second part delves into the learners’ perspective. It addresses aspects of the learning by secondary school students as well as by students just entering university, or teacher students. Topics discussed range from problem solving over the role of graphs to integrated mathematics and physics learning. The third part includes a broad range of subjects from teachers’ views and knowledge, the analysis of classroom discourse and an evaluated teaching proposal. The last part describes approaches that take up mathematization in a broader interpretation, and includes the presentation of a model for physics teachers’ pedagogical content knowledge (PCK) specific to the role of mathematics in physics.

Mathematics in Physics Education

Mathematics in Physics Education PDF Author: Gesche Pospiech
Publisher: Springer
ISBN: 3030046273
Category : Science
Languages : en
Pages : 383

Get Book Here

Book Description
This book is about mathematics in physics education, the difficulties students have in learning physics, and the way in which mathematization can help to improve physics teaching and learning. The book brings together different teaching and learning perspectives, and addresses both fundamental considerations and practical aspects. Divided into four parts, the book starts out with theoretical viewpoints that enlighten the interplay of physics and mathematics also including historical developments. The second part delves into the learners’ perspective. It addresses aspects of the learning by secondary school students as well as by students just entering university, or teacher students. Topics discussed range from problem solving over the role of graphs to integrated mathematics and physics learning. The third part includes a broad range of subjects from teachers’ views and knowledge, the analysis of classroom discourse and an evaluated teaching proposal. The last part describes approaches that take up mathematization in a broader interpretation, and includes the presentation of a model for physics teachers’ pedagogical content knowledge (PCK) specific to the role of mathematics in physics.

New Trends in Physics Education Research

New Trends in Physics Education Research PDF Author: Salvatore Magazù
Publisher:
ISBN: 9781536138931
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
Those who operate in physics education frequently ask research operators for suggestions, reference models, updated content and answers for their professional work. So far, the sector has not achieved significant advances specifically in terms of both content updates and methodology approaches. In the special issue, titled New Trends in Physics Education Research, the authors, in addition to presenting some new topics in physics education, take into account the greater relevance that in recent years the Evidence Based Education has taken place. In this framework, the main points of issue include: 1) Dealing with new trends in teaching and learning processes in physics; highlighting new mathematics content for physics courses; 3) giving evidence of the key role played by laboratory activities in physics training courses; and 4) stressing the importance of interdisciplinary approaches as well as scientific culture, communication and dissemination. Physics teaching involves several fields and different disciplines (such as mathematics, philosophy, laboratory activities, etc.) where the same arguments are often explained without clarifying that often there is a close correlation between disciplines. In particular, an integrated theoretical and experimental approach can improve the knowledge of some subjects of physics and mathematics; furthermore, it is also useful to employ a joint approach with laboratory activities, and by doing so enriching topics of meaning. In such cases, mathematics provides the adapt tools for physics and also is able to drive physical intuition; on the other hand, physics and its laboratory activities provide simple access to mathematical topics of complex comprehension. The issue is addressed to academics and schoolteachers as well as researchers in the field of physics education.

Mathematics for Physics

Mathematics for Physics PDF Author: Michael M. Woolfson
Publisher: Oxford University Press
ISBN: 0199289298
Category : Mathematics
Languages : en
Pages : 805

Get Book Here

Book Description
Mathematics for Physics features both print and online support, with many in-text exercises and end-of-chapter problems, and web-based computer programs, to both stimulate learning and build understanding.

Student Misconceptions and Errors in Physics and Mathematics

Student Misconceptions and Errors in Physics and Mathematics PDF Author: Teresa Neidorf
Publisher: Springer Nature
ISBN: 3030301885
Category : Education
Languages : en
Pages : 173

Get Book Here

Book Description
This open access report explores the nature and extent of students’ misconceptions and misunderstandings related to core concepts in physics and mathematics and physics across grades four, eight and 12. Twenty years of data from the IEA’s Trends in International Mathematics and Science Study (TIMSS) and TIMSS Advanced assessments are analyzed, specifically for five countries (Italy, Norway, Russian Federation, Slovenia, and the United States) who participated in all or almost all TIMSS and TIMSS Advanced assessments between 1995 and 2015. The report focuses on students’ understandings related to gravitational force in physics and linear equations in mathematics. It identifies some specific misconceptions, errors, and misunderstandings demonstrated by the TIMSS Advanced grade 12 students for these core concepts, and shows how these can be traced back to poor foundational development of these concepts in earlier grades. Patterns in misconceptions and misunderstandings are reported by grade, country, and gender. In addition, specific misconceptions and misunderstandings are tracked over time, using trend items administered in multiple assessment cycles. The study and associated methodology may enable education systems to help identify specific needs in the curriculum, improve inform instruction across grades and also raise possibilities for future TIMSS assessment design and reporting that may provide more diagnostic outcomes.

Second Year Calculus

Second Year Calculus PDF Author: David M. Bressoud
Publisher: Springer Science & Business Media
ISBN: 1461209595
Category : Mathematics
Languages : en
Pages : 399

Get Book Here

Book Description
Second Year Calculus: From Celestial Mechanics to Special Relativity covers multi-variable and vector calculus, emphasizing the historical physical problems which gave rise to the concepts of calculus. The book guides us from the birth of the mechanized view of the world in Isaac Newton's Mathematical Principles of Natural Philosophy in which mathematics becomes the ultimate tool for modelling physical reality, to the dawn of a radically new and often counter-intuitive age in Albert Einstein's Special Theory of Relativity in which it is the mathematical model which suggests new aspects of that reality. The development of this process is discussed from the modern viewpoint of differential forms. Using this concept, the student learns to compute orbits and rocket trajectories, model flows and force fields, and derive the laws of electricity and magnetism. These exercises and observations of mathematical symmetry enable the student to better understand the interaction of physics and mathematics.

Physics Education

Physics Education PDF Author: Hans Ernst Fischer
Publisher: Springer
ISBN: 9783030873905
Category : Science
Languages : en
Pages : 503

Get Book Here

Book Description
This book offers a comprehensive overview of the theoretical background and practice of physics teaching and learning and assists in the integration of highly interesting topics into physics lessons. Researchers in the field, including experienced educators, discuss basic theories, the methods and some contents of physics teaching and learning, highlighting new and traditional perspectives on physics instruction. A major aim is to explain how physics can be taught and learned effectively and in a manner enjoyable for both the teacher and the student. Close attention is paid to aspects such as teacher competences and requirements, lesson structure, and the use of experiments in physics lessons. The roles of mathematical and physical modeling, multiple representations, instructional explanations, and digital media in physics teaching are all examined. Quantitative and qualitative research on science education in schools is discussed, as quality assessment of physics instruction. The book is of great value to researchers involved in the teaching and learning of physics, to those training physics teachers, and to pre-service and practising physics teachers.

Mathematics for the Physical Sciences

Mathematics for the Physical Sciences PDF Author: Herbert S Wilf
Publisher: Courier Corporation
ISBN: 0486153347
Category : Mathematics
Languages : en
Pages : 304

Get Book Here

Book Description
Topics include vector spaces and matrices; orthogonal functions; polynomial equations; asymptotic expansions; ordinary differential equations; conformal mapping; and extremum problems. Includes exercises and solutions. 1962 edition.

Mathematics of Classical and Quantum Physics

Mathematics of Classical and Quantum Physics PDF Author: Frederick W. Byron
Publisher: Courier Corporation
ISBN: 0486135063
Category : Science
Languages : en
Pages : 674

Get Book Here

Book Description
Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.

Mathematical Methods and Physical Insights

Mathematical Methods and Physical Insights PDF Author: Alec J. Schramm
Publisher: Cambridge University Press
ISBN: 1009293427
Category : Science
Languages : en
Pages : 788

Get Book Here

Book Description
Mathematics instruction is often more effective when presented in a physical context. Schramm uses this insight to help develop students' physical intuition as he guides them through the mathematical methods required to study upper-level physics. Based on the undergraduate Math Methods course he has taught for many years at Occidental College, the text encourages a symbiosis through which the physics illuminates the math, which in turn informs the physics. Appropriate for both classroom and self-study use, the text begins with a review of useful techniques to ensure students are comfortable with prerequisite material. It then moves on to cover vector fields, analytic functions, linear algebra, function spaces, and differential equations. Written in an informal and engaging style, it also includes short supplementary digressions ('By the Ways') as optional boxes showcasing directions in which the math or physics may be explored further. Extensive problems are included throughout, many taking advantage of Mathematica, to test and deepen comprehension.

Physical Mathematics

Physical Mathematics PDF Author: Kevin Cahill
Publisher: Cambridge University Press
ISBN: 1107310733
Category : Science
Languages : en
Pages : 685

Get Book Here

Book Description
Unique in its clarity, examples and range, Physical Mathematics explains as simply as possible the mathematics that graduate students and professional physicists need in their courses and research. The author illustrates the mathematics with numerous physical examples drawn from contemporary research. In addition to basic subjects such as linear algebra, Fourier analysis, complex variables, differential equations and Bessel functions, this textbook covers topics such as the singular-value decomposition, Lie algebras, the tensors and forms of general relativity, the central limit theorem and Kolmogorov test of statistics, the Monte Carlo methods of experimental and theoretical physics, the renormalization group of condensed-matter physics and the functional derivatives and Feynman path integrals of quantum field theory.