Author: Michael M. Woolfson
Publisher: Oxford University Press
ISBN: 0199289298
Category : Mathematics
Languages : en
Pages : 805
Book Description
Mathematics for Physics features both print and online support, with many in-text exercises and end-of-chapter problems, and web-based computer programs, to both stimulate learning and build understanding.
Mathematics for Physics
Basic Training in Mathematics
Author: R. Shankar
Publisher: Springer
ISBN: 1489967982
Category : Science
Languages : en
Pages : 371
Book Description
Based on course material used by the author at Yale University, this practical text addresses the widening gap found between the mathematics required for upper-level courses in the physical sciences and the knowledge of incoming students. This superb book offers students an excellent opportunity to strengthen their mathematical skills by solving various problems in differential calculus. By covering material in its simplest form, students can look forward to a smooth entry into any course in the physical sciences.
Publisher: Springer
ISBN: 1489967982
Category : Science
Languages : en
Pages : 371
Book Description
Based on course material used by the author at Yale University, this practical text addresses the widening gap found between the mathematics required for upper-level courses in the physical sciences and the knowledge of incoming students. This superb book offers students an excellent opportunity to strengthen their mathematical skills by solving various problems in differential calculus. By covering material in its simplest form, students can look forward to a smooth entry into any course in the physical sciences.
Mathematics for Physics
Author: Michael Stone
Publisher: Cambridge University Press
ISBN: 1139480618
Category : Science
Languages : en
Pages : 821
Book Description
An engagingly-written account of mathematical tools and ideas, this book provides a graduate-level introduction to the mathematics used in research in physics. The first half of the book focuses on the traditional mathematical methods of physics – differential and integral equations, Fourier series and the calculus of variations. The second half contains an introduction to more advanced subjects, including differential geometry, topology and complex variables. The authors' exposition avoids excess rigor whilst explaining subtle but important points often glossed over in more elementary texts. The topics are illustrated at every stage by carefully chosen examples, exercises and problems drawn from realistic physics settings. These make it useful both as a textbook in advanced courses and for self-study. Password-protected solutions to the exercises are available to instructors at www.cambridge.org/9780521854030.
Publisher: Cambridge University Press
ISBN: 1139480618
Category : Science
Languages : en
Pages : 821
Book Description
An engagingly-written account of mathematical tools and ideas, this book provides a graduate-level introduction to the mathematics used in research in physics. The first half of the book focuses on the traditional mathematical methods of physics – differential and integral equations, Fourier series and the calculus of variations. The second half contains an introduction to more advanced subjects, including differential geometry, topology and complex variables. The authors' exposition avoids excess rigor whilst explaining subtle but important points often glossed over in more elementary texts. The topics are illustrated at every stage by carefully chosen examples, exercises and problems drawn from realistic physics settings. These make it useful both as a textbook in advanced courses and for self-study. Password-protected solutions to the exercises are available to instructors at www.cambridge.org/9780521854030.
Mathematics of Classical and Quantum Physics
Author: Frederick W. Byron
Publisher: Courier Corporation
ISBN: 0486135063
Category : Science
Languages : en
Pages : 674
Book Description
Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.
Publisher: Courier Corporation
ISBN: 0486135063
Category : Science
Languages : en
Pages : 674
Book Description
Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.
Mathematical Methods for Physicists
Author: George Brown Arfken
Publisher: Academic Press
ISBN: 0123846544
Category : Mathematics
Languages : en
Pages : 1230
Book Description
Table of Contents Mathematical Preliminaries Determinants and Matrices Vector Analysis Tensors and Differential Forms Vector Spaces Eigenvalue Problems Ordinary Differential Equations Partial Differential Equations Green's Functions Complex Variable Theory Further Topics in Analysis Gamma Function Bessel Functions Legendre Functions Angular Momentum Group Theory More Special Functions Fourier Series Integral Transforms Periodic Systems Integral Equations Mathieu Functions Calculus of Variations Probability and Statistics.
Publisher: Academic Press
ISBN: 0123846544
Category : Mathematics
Languages : en
Pages : 1230
Book Description
Table of Contents Mathematical Preliminaries Determinants and Matrices Vector Analysis Tensors and Differential Forms Vector Spaces Eigenvalue Problems Ordinary Differential Equations Partial Differential Equations Green's Functions Complex Variable Theory Further Topics in Analysis Gamma Function Bessel Functions Legendre Functions Angular Momentum Group Theory More Special Functions Fourier Series Integral Transforms Periodic Systems Integral Equations Mathieu Functions Calculus of Variations Probability and Statistics.
Explorations in Mathematical Physics
Author: Don Koks
Publisher: Springer Science & Business Media
ISBN: 0387309438
Category : Science
Languages : en
Pages : 549
Book Description
Have you ever wondered why the language of modern physics centres on geometry? Or how quantum operators and Dirac brackets work? What a convolution really is? What tensors are all about? Or what field theory and lagrangians are, and why gravity is described as curvature? This book takes you on a tour of the main ideas forming the language of modern mathematical physics. Here you will meet novel approaches to concepts such as determinants and geometry, wave function evolution, statistics, signal processing, and three-dimensional rotations. You will see how the accelerated frames of special relativity tell us about gravity. On the journey, you will discover how tensor notation relates to vector calculus, how differential geometry is built on intuitive concepts, and how variational calculus leads to field theory. You will meet quantum measurement theory, along with Green functions and the art of complex integration, and finally general relativity and cosmology. The book takes a fresh approach to tensor analysis built solely on the metric and vectors, with no need for one-forms. This gives a much more geometrical and intuitive insight into vector and tensor calculus, together with general relativity, than do traditional, more abstract methods. Don Koks is a physicist at the Defence Science and Technology Organisation in Adelaide, Australia. His doctorate in quantum cosmology was obtained from the Department of Physics and Mathematical Physics at Adelaide University. Prior work at the University of Auckland specialised in applied accelerator physics, along with pure and applied mathematics.
Publisher: Springer Science & Business Media
ISBN: 0387309438
Category : Science
Languages : en
Pages : 549
Book Description
Have you ever wondered why the language of modern physics centres on geometry? Or how quantum operators and Dirac brackets work? What a convolution really is? What tensors are all about? Or what field theory and lagrangians are, and why gravity is described as curvature? This book takes you on a tour of the main ideas forming the language of modern mathematical physics. Here you will meet novel approaches to concepts such as determinants and geometry, wave function evolution, statistics, signal processing, and three-dimensional rotations. You will see how the accelerated frames of special relativity tell us about gravity. On the journey, you will discover how tensor notation relates to vector calculus, how differential geometry is built on intuitive concepts, and how variational calculus leads to field theory. You will meet quantum measurement theory, along with Green functions and the art of complex integration, and finally general relativity and cosmology. The book takes a fresh approach to tensor analysis built solely on the metric and vectors, with no need for one-forms. This gives a much more geometrical and intuitive insight into vector and tensor calculus, together with general relativity, than do traditional, more abstract methods. Don Koks is a physicist at the Defence Science and Technology Organisation in Adelaide, Australia. His doctorate in quantum cosmology was obtained from the Department of Physics and Mathematical Physics at Adelaide University. Prior work at the University of Auckland specialised in applied accelerator physics, along with pure and applied mathematics.
Mathematics For Physics: An Illustrated Handbook
Author: Adam Marsh
Publisher: World Scientific
ISBN: 9813233931
Category : Science
Languages : en
Pages : 301
Book Description
This unique book complements traditional textbooks by providing a visual yet rigorous survey of the mathematics used in theoretical physics beyond that typically covered in undergraduate math and physics courses. The exposition is pedagogical but compact, and the emphasis is on defining and visualizing concepts and relationships between them, as well as listing common confusions, alternative notations and jargon, and relevant facts and theorems. Special attention is given to detailed figures and geometric viewpoints. Certain topics which are well covered in textbooks, such as historical motivations, proofs and derivations, and tools for practical calculations, are avoided. The primary physical models targeted are general relativity, spinors, and gauge theories, with notable chapters on Riemannian geometry, Clifford algebras, and fiber bundles.
Publisher: World Scientific
ISBN: 9813233931
Category : Science
Languages : en
Pages : 301
Book Description
This unique book complements traditional textbooks by providing a visual yet rigorous survey of the mathematics used in theoretical physics beyond that typically covered in undergraduate math and physics courses. The exposition is pedagogical but compact, and the emphasis is on defining and visualizing concepts and relationships between them, as well as listing common confusions, alternative notations and jargon, and relevant facts and theorems. Special attention is given to detailed figures and geometric viewpoints. Certain topics which are well covered in textbooks, such as historical motivations, proofs and derivations, and tools for practical calculations, are avoided. The primary physical models targeted are general relativity, spinors, and gauge theories, with notable chapters on Riemannian geometry, Clifford algebras, and fiber bundles.
The Road to Reality
Author: Roger Penrose
Publisher: Vintage
ISBN: 0593315308
Category : Science
Languages : en
Pages : 1160
Book Description
**WINNER OF THE 2020 NOBEL PRIZE IN PHYSICS** The Road to Reality is the most important and ambitious work of science for a generation. It provides nothing less than a comprehensive account of the physical universe and the essentials of its underlying mathematical theory. It assumes no particular specialist knowledge on the part of the reader, so that, for example, the early chapters give us the vital mathematical background to the physical theories explored later in the book. Roger Penrose's purpose is to describe as clearly as possible our present understanding of the universe and to convey a feeling for its deep beauty and philosophical implications, as well as its intricate logical interconnections. The Road to Reality is rarely less than challenging, but the book is leavened by vivid descriptive passages, as well as hundreds of hand-drawn diagrams. In a single work of colossal scope one of the world's greatest scientists has given us a complete and unrivalled guide to the glories of the universe that we all inhabit. 'Roger Penrose is the most important physicist to work in relativity theory except for Einstein. He is one of the very few people I've met in my life who, without reservation, I call a genius' Lee Smolin
Publisher: Vintage
ISBN: 0593315308
Category : Science
Languages : en
Pages : 1160
Book Description
**WINNER OF THE 2020 NOBEL PRIZE IN PHYSICS** The Road to Reality is the most important and ambitious work of science for a generation. It provides nothing less than a comprehensive account of the physical universe and the essentials of its underlying mathematical theory. It assumes no particular specialist knowledge on the part of the reader, so that, for example, the early chapters give us the vital mathematical background to the physical theories explored later in the book. Roger Penrose's purpose is to describe as clearly as possible our present understanding of the universe and to convey a feeling for its deep beauty and philosophical implications, as well as its intricate logical interconnections. The Road to Reality is rarely less than challenging, but the book is leavened by vivid descriptive passages, as well as hundreds of hand-drawn diagrams. In a single work of colossal scope one of the world's greatest scientists has given us a complete and unrivalled guide to the glories of the universe that we all inhabit. 'Roger Penrose is the most important physicist to work in relativity theory except for Einstein. He is one of the very few people I've met in my life who, without reservation, I call a genius' Lee Smolin
Mathematical Physics
Author: Sadri Hassani
Publisher: Springer Science & Business Media
ISBN: 9780387985794
Category : Science
Languages : en
Pages : 1052
Book Description
For physics students interested in the mathematics they use, and for math students interested in seeing how some of the ideas of their discipline find realization in an applied setting. The presentation strikes a balance between formalism and application, between abstract and concrete. The interconnections among the various topics are clarified both by the use of vector spaces as a central unifying theme, recurring throughout the book, and by putting ideas into their historical context. Enough of the essential formalism is included to make the presentation self-contained.
Publisher: Springer Science & Business Media
ISBN: 9780387985794
Category : Science
Languages : en
Pages : 1052
Book Description
For physics students interested in the mathematics they use, and for math students interested in seeing how some of the ideas of their discipline find realization in an applied setting. The presentation strikes a balance between formalism and application, between abstract and concrete. The interconnections among the various topics are clarified both by the use of vector spaces as a central unifying theme, recurring throughout the book, and by putting ideas into their historical context. Enough of the essential formalism is included to make the presentation self-contained.
Functional Differential Geometry
Author: Gerald Jay Sussman
Publisher: MIT Press
ISBN: 0262019345
Category : Mathematics
Languages : en
Pages : 249
Book Description
An explanation of the mathematics needed as a foundation for a deep understanding of general relativity or quantum field theory. Physics is naturally expressed in mathematical language. Students new to the subject must simultaneously learn an idiomatic mathematical language and the content that is expressed in that language. It is as if they were asked to read Les Misérables while struggling with French grammar. This book offers an innovative way to learn the differential geometry needed as a foundation for a deep understanding of general relativity or quantum field theory as taught at the college level. The approach taken by the authors (and used in their classes at MIT for many years) differs from the conventional one in several ways, including an emphasis on the development of the covariant derivative and an avoidance of the use of traditional index notation for tensors in favor of a semantically richer language of vector fields and differential forms. But the biggest single difference is the authors' integration of computer programming into their explanations. By programming a computer to interpret a formula, the student soon learns whether or not a formula is correct. Students are led to improve their program, and as a result improve their understanding.
Publisher: MIT Press
ISBN: 0262019345
Category : Mathematics
Languages : en
Pages : 249
Book Description
An explanation of the mathematics needed as a foundation for a deep understanding of general relativity or quantum field theory. Physics is naturally expressed in mathematical language. Students new to the subject must simultaneously learn an idiomatic mathematical language and the content that is expressed in that language. It is as if they were asked to read Les Misérables while struggling with French grammar. This book offers an innovative way to learn the differential geometry needed as a foundation for a deep understanding of general relativity or quantum field theory as taught at the college level. The approach taken by the authors (and used in their classes at MIT for many years) differs from the conventional one in several ways, including an emphasis on the development of the covariant derivative and an avoidance of the use of traditional index notation for tensors in favor of a semantically richer language of vector fields and differential forms. But the biggest single difference is the authors' integration of computer programming into their explanations. By programming a computer to interpret a formula, the student soon learns whether or not a formula is correct. Students are led to improve their program, and as a result improve their understanding.