Author: Johannes Lenhard
Publisher: Springer
ISBN: 3319544691
Category : Science
Languages : en
Pages : 285
Book Description
This book puts forward a new role for mathematics in the natural sciences. In the traditional understanding, a strong viewpoint is advocated, on the one hand, according to which mathematics is used for truthfully expressing laws of nature and thus for rendering the rational structure of the world. In a weaker understanding, many deny that these fundamental laws are of an essentially mathematical character, and suggest that mathematics is merely a convenient tool for systematizing observational knowledge. The position developed in this volume combines features of both the strong and the weak viewpoint. In accordance with the former, mathematics is assigned an active and even shaping role in the sciences, but at the same time, employing mathematics as a tool is taken to be independent from the possible mathematical structure of the objects under consideration. Hence the tool perspective is contextual rather than ontological. Furthermore, tool-use has to respect conditions like suitability, efficacy, optimality, and others. There is a spectrum of means that will normally differ in how well they serve particular purposes. The tool perspective underlines the inevitably provisional validity of mathematics: any tool can be adjusted, improved, or lose its adequacy upon changing practical conditions.
Mathematics as a Tool
Author: Johannes Lenhard
Publisher: Springer
ISBN: 3319544691
Category : Science
Languages : en
Pages : 285
Book Description
This book puts forward a new role for mathematics in the natural sciences. In the traditional understanding, a strong viewpoint is advocated, on the one hand, according to which mathematics is used for truthfully expressing laws of nature and thus for rendering the rational structure of the world. In a weaker understanding, many deny that these fundamental laws are of an essentially mathematical character, and suggest that mathematics is merely a convenient tool for systematizing observational knowledge. The position developed in this volume combines features of both the strong and the weak viewpoint. In accordance with the former, mathematics is assigned an active and even shaping role in the sciences, but at the same time, employing mathematics as a tool is taken to be independent from the possible mathematical structure of the objects under consideration. Hence the tool perspective is contextual rather than ontological. Furthermore, tool-use has to respect conditions like suitability, efficacy, optimality, and others. There is a spectrum of means that will normally differ in how well they serve particular purposes. The tool perspective underlines the inevitably provisional validity of mathematics: any tool can be adjusted, improved, or lose its adequacy upon changing practical conditions.
Publisher: Springer
ISBN: 3319544691
Category : Science
Languages : en
Pages : 285
Book Description
This book puts forward a new role for mathematics in the natural sciences. In the traditional understanding, a strong viewpoint is advocated, on the one hand, according to which mathematics is used for truthfully expressing laws of nature and thus for rendering the rational structure of the world. In a weaker understanding, many deny that these fundamental laws are of an essentially mathematical character, and suggest that mathematics is merely a convenient tool for systematizing observational knowledge. The position developed in this volume combines features of both the strong and the weak viewpoint. In accordance with the former, mathematics is assigned an active and even shaping role in the sciences, but at the same time, employing mathematics as a tool is taken to be independent from the possible mathematical structure of the objects under consideration. Hence the tool perspective is contextual rather than ontological. Furthermore, tool-use has to respect conditions like suitability, efficacy, optimality, and others. There is a spectrum of means that will normally differ in how well they serve particular purposes. The tool perspective underlines the inevitably provisional validity of mathematics: any tool can be adjusted, improved, or lose its adequacy upon changing practical conditions.
Tools and Mathematics
Author: John Monaghan
Publisher: Springer
ISBN: 3319023969
Category : Education
Languages : en
Pages : 497
Book Description
This book is an exploration of tools and mathematics and issues in mathematics education related to tool use. The book has five parts. The first part reflects on doing a mathematical task with different tools, followed by a mathematician's account of tool use in his work. The second considers prehistory and history: tools in the development from ape to human; tools and mathematics in the ancient world; tools for calculating; and tools in mathematics instruction. The third part opens with a broad review of technology and intellectual trends, circa 1970, and continues with three case studies of approaches in mathematics education and the place of tools in these approaches. The fourth part considers issues related to mathematics instructions: curriculum, assessment and policy; the calculator debate; mathematics in the real world; and teachers' use of technology. The final part looks to the future: task and tool design and new forms of activity via connectivity and computer games.
Publisher: Springer
ISBN: 3319023969
Category : Education
Languages : en
Pages : 497
Book Description
This book is an exploration of tools and mathematics and issues in mathematics education related to tool use. The book has five parts. The first part reflects on doing a mathematical task with different tools, followed by a mathematician's account of tool use in his work. The second considers prehistory and history: tools in the development from ape to human; tools and mathematics in the ancient world; tools for calculating; and tools in mathematics instruction. The third part opens with a broad review of technology and intellectual trends, circa 1970, and continues with three case studies of approaches in mathematics education and the place of tools in these approaches. The fourth part considers issues related to mathematics instructions: curriculum, assessment and policy; the calculator debate; mathematics in the real world; and teachers' use of technology. The final part looks to the future: task and tool design and new forms of activity via connectivity and computer games.
Symbolizing, Modeling and Tool Use in Mathematics Education
Author: K.P Gravemeijer
Publisher: Springer Science & Business Media
ISBN: 9401731942
Category : Education
Languages : en
Pages : 304
Book Description
This book explores the option of building on symbolizing, modeling and tool use as personally meaningful activities of students. It discusses the dimension of setting: varying from the study of informal, spontaneous activity of students, to an explicit focus on instructional design, and goals and effects of instruction; and the dimension of the theoretical framework of the researcher: varying from constructivism, to activity theory, cognitive psychology and instructional-design theory.
Publisher: Springer Science & Business Media
ISBN: 9401731942
Category : Education
Languages : en
Pages : 304
Book Description
This book explores the option of building on symbolizing, modeling and tool use as personally meaningful activities of students. It discusses the dimension of setting: varying from the study of informal, spontaneous activity of students, to an explicit focus on instructional design, and goals and effects of instruction; and the dimension of the theoretical framework of the researcher: varying from constructivism, to activity theory, cognitive psychology and instructional-design theory.
Semiotics as a Tool for Learning Mathematics
Author: Adalira Sáenz-Ludlow
Publisher: Springer
ISBN: 9463003371
Category : Education
Languages : en
Pages : 224
Book Description
Semiotics as a Tool for Learning Mathematics is a collection of ten theoretical and empirical chapters, from researchers all over the world, who are interested in semiotic notions and their practical uses in mathematics classrooms. Collectively, they present a semiotic contribution to enhance pedagogical aspects both for the teaching of school mathematics and for the preparation of pre-service teachers. This enhancement involves the use of diagrams to visualize implicit or explicit mathematical relations and the use of mathematical discourse to facilitate the emergence of inferential reasoning in the process of argumentation. It will also facilitate the construction of proofs and solutions of mathematical problems as well as the progressive construction of mathematical conceptions that, eventually, will approximate the concept(s) encoded in mathematical symbols. These symbols hinge not only of mental operations but also on indexical and iconic aspects; aspects which often are not taken into account when working on the meaning of mathematical symbols. For such an enhancement to happen, it is necessary to transform basic notions of semiotic theories to make them usable for mathematics education. In addition, it is also necessary to back theoretical claims with empirical data. This anthology attempts to deal with such a conjunction. Overall, this book can be used as a theoretical basis for further semiotic considerations as well as for the design of different ways of teaching mathematical concepts.
Publisher: Springer
ISBN: 9463003371
Category : Education
Languages : en
Pages : 224
Book Description
Semiotics as a Tool for Learning Mathematics is a collection of ten theoretical and empirical chapters, from researchers all over the world, who are interested in semiotic notions and their practical uses in mathematics classrooms. Collectively, they present a semiotic contribution to enhance pedagogical aspects both for the teaching of school mathematics and for the preparation of pre-service teachers. This enhancement involves the use of diagrams to visualize implicit or explicit mathematical relations and the use of mathematical discourse to facilitate the emergence of inferential reasoning in the process of argumentation. It will also facilitate the construction of proofs and solutions of mathematical problems as well as the progressive construction of mathematical conceptions that, eventually, will approximate the concept(s) encoded in mathematical symbols. These symbols hinge not only of mental operations but also on indexical and iconic aspects; aspects which often are not taken into account when working on the meaning of mathematical symbols. For such an enhancement to happen, it is necessary to transform basic notions of semiotic theories to make them usable for mathematics education. In addition, it is also necessary to back theoretical claims with empirical data. This anthology attempts to deal with such a conjunction. Overall, this book can be used as a theoretical basis for further semiotic considerations as well as for the design of different ways of teaching mathematical concepts.
Tools of the Trade
Author: Paul J. Sally (Jr.)
Publisher: American Mathematical Soc.
ISBN: 0821846345
Category : Mathematics
Languages : en
Pages : 210
Book Description
"This book provides a transition from the formula-full aspects of the beginning study of college level mathematics to the rich and creative world of more advanced topics. It is designed to assist the student in mastering the techniques of analysis and proof that are required to do mathematics." "Along with the standard material such as linear algebra, construction of the real numbers via Cauchy sequences, metric spaces and complete metric spaces, there are three projects at the end of each chapter that form an integral part of the text. These projects include a detailed discussion of topics such as group theory, convergence of infinite series, decimal expansions of real numbers, point set topology and topological groups. They are carefully designed to guide the student through the subject matter. Together with numerous exercises included in the book, these projects may be used as part of the regular classroom presentation, as self-study projects for students, or for Inquiry Based Learning activities presented by the students."--BOOK JACKET.
Publisher: American Mathematical Soc.
ISBN: 0821846345
Category : Mathematics
Languages : en
Pages : 210
Book Description
"This book provides a transition from the formula-full aspects of the beginning study of college level mathematics to the rich and creative world of more advanced topics. It is designed to assist the student in mastering the techniques of analysis and proof that are required to do mathematics." "Along with the standard material such as linear algebra, construction of the real numbers via Cauchy sequences, metric spaces and complete metric spaces, there are three projects at the end of each chapter that form an integral part of the text. These projects include a detailed discussion of topics such as group theory, convergence of infinite series, decimal expansions of real numbers, point set topology and topological groups. They are carefully designed to guide the student through the subject matter. Together with numerous exercises included in the book, these projects may be used as part of the regular classroom presentation, as self-study projects for students, or for Inquiry Based Learning activities presented by the students."--BOOK JACKET.
Math Fact Fluency
Author: Jennifer Bay-Williams
Publisher: ASCD
ISBN: 1416627227
Category : Education
Languages : en
Pages : 206
Book Description
This approach to teaching basic math facts, grounded in years of research, will transform students' learning of basic facts and help them become more confident, adept, and successful at math. Mastering the basic facts for addition, subtraction, multiplication, and division is an essential goal for all students. Most educators also agree that success at higher levels of math hinges on this fundamental skill. But what's the best way to get there? Are flash cards, drills, and timed tests the answer? If so, then why do students go into the upper elementary grades (and beyond) still counting on their fingers or experiencing math anxiety? What does research say about teaching basic math facts so they will stick? In Math Fact Fluency, experts Jennifer Bay-Williams and Gina Kling provide the answers to these questions—and so much more. This book offers everything a teacher needs to teach, assess, and communicate with parents about basic math fact instruction, including The five fundamentals of fact fluency, which provide a research-based framework for effective instruction in the basic facts. Strategies students can use to find facts that are not yet committed to memory. More than 40 easy-to-make, easy-to-use games that provide engaging fact practice. More than 20 assessment tools that provide useful data on fact fluency and mastery. Suggestions and strategies for collaborating with families to help their children master the basic math facts. Math Fact Fluency is an indispensable guide for any educator who needs to teach basic math facts.
Publisher: ASCD
ISBN: 1416627227
Category : Education
Languages : en
Pages : 206
Book Description
This approach to teaching basic math facts, grounded in years of research, will transform students' learning of basic facts and help them become more confident, adept, and successful at math. Mastering the basic facts for addition, subtraction, multiplication, and division is an essential goal for all students. Most educators also agree that success at higher levels of math hinges on this fundamental skill. But what's the best way to get there? Are flash cards, drills, and timed tests the answer? If so, then why do students go into the upper elementary grades (and beyond) still counting on their fingers or experiencing math anxiety? What does research say about teaching basic math facts so they will stick? In Math Fact Fluency, experts Jennifer Bay-Williams and Gina Kling provide the answers to these questions—and so much more. This book offers everything a teacher needs to teach, assess, and communicate with parents about basic math fact instruction, including The five fundamentals of fact fluency, which provide a research-based framework for effective instruction in the basic facts. Strategies students can use to find facts that are not yet committed to memory. More than 40 easy-to-make, easy-to-use games that provide engaging fact practice. More than 20 assessment tools that provide useful data on fact fluency and mastery. Suggestions and strategies for collaborating with families to help their children master the basic math facts. Math Fact Fluency is an indispensable guide for any educator who needs to teach basic math facts.
Mathematical Concepts
Author: Jürgen Jost
Publisher: Springer
ISBN: 331920436X
Category : Mathematics
Languages : en
Pages : 315
Book Description
The main intention of this book is to describe and develop the conceptual, structural and abstract thinking of mathematics. Specific mathematical structures are used to illustrate the conceptual approach; providing a deeper insight into mutual relationships and abstract common features. These ideas are carefully motivated, explained and illustrated by examples so that many of the more technical proofs can be omitted. The book can therefore be used: · simply as an overview of the panorama of mathematical structures and the relations between them, to be supplemented by more detailed texts whenever you want to acquire a working knowledge of some structure · by itself as a first introduction to abstract mathematics · together with existing textbooks, to put their results into a more general perspective · to gain a new and hopefully deeper perspective after having studied such textbooks Mathematical Concepts has a broader scope and is less detailed than standard mathematical textbooks so that the reader can readily grasp the essential concepts and ideas for individual needs. It will be suitable for advanced mathematicians, postgraduate students and for scientists from other fields with some background in formal reasoning.
Publisher: Springer
ISBN: 331920436X
Category : Mathematics
Languages : en
Pages : 315
Book Description
The main intention of this book is to describe and develop the conceptual, structural and abstract thinking of mathematics. Specific mathematical structures are used to illustrate the conceptual approach; providing a deeper insight into mutual relationships and abstract common features. These ideas are carefully motivated, explained and illustrated by examples so that many of the more technical proofs can be omitted. The book can therefore be used: · simply as an overview of the panorama of mathematical structures and the relations between them, to be supplemented by more detailed texts whenever you want to acquire a working knowledge of some structure · by itself as a first introduction to abstract mathematics · together with existing textbooks, to put their results into a more general perspective · to gain a new and hopefully deeper perspective after having studied such textbooks Mathematical Concepts has a broader scope and is less detailed than standard mathematical textbooks so that the reader can readily grasp the essential concepts and ideas for individual needs. It will be suitable for advanced mathematicians, postgraduate students and for scientists from other fields with some background in formal reasoning.
A Student's Guide to the Study, Practice, and Tools of Modern Mathematics
Author: Donald Bindner
Publisher: CRC Press
ISBN: 1439846073
Category : Mathematics
Languages : en
Pages : 269
Book Description
A Student's Guide to the Study, Practice, and Tools of Modern Mathematics provides an accessible introduction to the world of mathematics. It offers tips on how to study and write mathematics as well as how to use various mathematical tools, from LaTeX and Beamer to Mathematica and Maple to MATLAB and R. Along with a color insert, the text include
Publisher: CRC Press
ISBN: 1439846073
Category : Mathematics
Languages : en
Pages : 269
Book Description
A Student's Guide to the Study, Practice, and Tools of Modern Mathematics provides an accessible introduction to the world of mathematics. It offers tips on how to study and write mathematics as well as how to use various mathematical tools, from LaTeX and Beamer to Mathematica and Maple to MATLAB and R. Along with a color insert, the text include
Mind Tools
Author: Rudy Rucker
Publisher: Courier Corporation
ISBN: 0486492281
Category : Computers
Languages : en
Pages : 337
Book Description
Originally published: Boston: Houghton Mifflin, 1987.
Publisher: Courier Corporation
ISBN: 0486492281
Category : Computers
Languages : en
Pages : 337
Book Description
Originally published: Boston: Houghton Mifflin, 1987.
Visible Learning for Mathematics, Grades K-12
Author: John Hattie
Publisher: Corwin Press
ISBN: 1506362958
Category : Education
Languages : en
Pages : 209
Book Description
Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.
Publisher: Corwin Press
ISBN: 1506362958
Category : Education
Languages : en
Pages : 209
Book Description
Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.