Author: Gerard O’Regan
Publisher: Springer Nature
ISBN: 3030342093
Category : Computers
Languages : en
Pages : 468
Book Description
This illuminating textbook provides a concise review of the core concepts in mathematics essential to computer scientists. Emphasis is placed on the practical computing applications enabled by seemingly abstract mathematical ideas, presented within their historical context. The text spans a broad selection of key topics, ranging from the use of finite field theory to correct code and the role of number theory in cryptography, to the value of graph theory when modelling networks and the importance of formal methods for safety critical systems. This fully updated new edition has been expanded with a more comprehensive treatment of algorithms, logic, automata theory, model checking, software reliability and dependability, algebra, sequences and series, and mathematical induction. Topics and features: includes numerous pedagogical features, such as chapter-opening key topics, chapter introductions and summaries, review questions, and a glossary; describes the historical contributions of such prominent figures as Leibniz, Babbage, Boole, and von Neumann; introduces the fundamental mathematical concepts of sets, relations and functions, along with the basics of number theory, algebra, algorithms, and matrices; explores arithmetic and geometric sequences and series, mathematical induction and recursion, graph theory, computability and decidability, and automata theory; reviews the core issues of coding theory, language theory, software engineering, and software reliability, as well as formal methods and model checking; covers key topics on logic, from ancient Greek contributions to modern applications in AI, and discusses the nature of mathematical proof and theorem proving; presents a short introduction to probability and statistics, complex numbers and quaternions, and calculus. This engaging and easy-to-understand book will appeal to students of computer science wishing for an overview of the mathematics used in computing, and to mathematicians curious about how their subject is applied in the field of computer science. The book will also capture the interest of the motivated general reader.
Mathematics in Computing
Author: Gerard O’Regan
Publisher: Springer Nature
ISBN: 3030342093
Category : Computers
Languages : en
Pages : 468
Book Description
This illuminating textbook provides a concise review of the core concepts in mathematics essential to computer scientists. Emphasis is placed on the practical computing applications enabled by seemingly abstract mathematical ideas, presented within their historical context. The text spans a broad selection of key topics, ranging from the use of finite field theory to correct code and the role of number theory in cryptography, to the value of graph theory when modelling networks and the importance of formal methods for safety critical systems. This fully updated new edition has been expanded with a more comprehensive treatment of algorithms, logic, automata theory, model checking, software reliability and dependability, algebra, sequences and series, and mathematical induction. Topics and features: includes numerous pedagogical features, such as chapter-opening key topics, chapter introductions and summaries, review questions, and a glossary; describes the historical contributions of such prominent figures as Leibniz, Babbage, Boole, and von Neumann; introduces the fundamental mathematical concepts of sets, relations and functions, along with the basics of number theory, algebra, algorithms, and matrices; explores arithmetic and geometric sequences and series, mathematical induction and recursion, graph theory, computability and decidability, and automata theory; reviews the core issues of coding theory, language theory, software engineering, and software reliability, as well as formal methods and model checking; covers key topics on logic, from ancient Greek contributions to modern applications in AI, and discusses the nature of mathematical proof and theorem proving; presents a short introduction to probability and statistics, complex numbers and quaternions, and calculus. This engaging and easy-to-understand book will appeal to students of computer science wishing for an overview of the mathematics used in computing, and to mathematicians curious about how their subject is applied in the field of computer science. The book will also capture the interest of the motivated general reader.
Publisher: Springer Nature
ISBN: 3030342093
Category : Computers
Languages : en
Pages : 468
Book Description
This illuminating textbook provides a concise review of the core concepts in mathematics essential to computer scientists. Emphasis is placed on the practical computing applications enabled by seemingly abstract mathematical ideas, presented within their historical context. The text spans a broad selection of key topics, ranging from the use of finite field theory to correct code and the role of number theory in cryptography, to the value of graph theory when modelling networks and the importance of formal methods for safety critical systems. This fully updated new edition has been expanded with a more comprehensive treatment of algorithms, logic, automata theory, model checking, software reliability and dependability, algebra, sequences and series, and mathematical induction. Topics and features: includes numerous pedagogical features, such as chapter-opening key topics, chapter introductions and summaries, review questions, and a glossary; describes the historical contributions of such prominent figures as Leibniz, Babbage, Boole, and von Neumann; introduces the fundamental mathematical concepts of sets, relations and functions, along with the basics of number theory, algebra, algorithms, and matrices; explores arithmetic and geometric sequences and series, mathematical induction and recursion, graph theory, computability and decidability, and automata theory; reviews the core issues of coding theory, language theory, software engineering, and software reliability, as well as formal methods and model checking; covers key topics on logic, from ancient Greek contributions to modern applications in AI, and discusses the nature of mathematical proof and theorem proving; presents a short introduction to probability and statistics, complex numbers and quaternions, and calculus. This engaging and easy-to-understand book will appeal to students of computer science wishing for an overview of the mathematics used in computing, and to mathematicians curious about how their subject is applied in the field of computer science. The book will also capture the interest of the motivated general reader.
Mathematics and Computation in Music
Author: Jason Yust
Publisher: Springer
ISBN: 3642393578
Category : Computers
Languages : en
Pages : 256
Book Description
This book constitutes the thoroughly refereed proceedings of the Fourth International Conference on Mathematics and Computation in Music, MCM 2013, held in Montreal, Canada, in June 2013. The 18 papers presented were carefully reviewed and selected from numerous submissions. They are promoting the collaboration and exchange of ideas among researchers in music theory, mathematics, computer science, musicology, cognition and other related fields.
Publisher: Springer
ISBN: 3642393578
Category : Computers
Languages : en
Pages : 256
Book Description
This book constitutes the thoroughly refereed proceedings of the Fourth International Conference on Mathematics and Computation in Music, MCM 2013, held in Montreal, Canada, in June 2013. The 18 papers presented were carefully reviewed and selected from numerous submissions. They are promoting the collaboration and exchange of ideas among researchers in music theory, mathematics, computer science, musicology, cognition and other related fields.
Numerical Mathematics and Computing
Author: Elliott Ward Cheney
Publisher: Thomson Brooks/Cole
ISBN: 9781133491811
Category : Numerical analysis
Languages : en
Pages : 678
Book Description
Authors Ward Cheney and David Kincaid show students of science and engineering the potential computers have for solving numerical problems and give them ample opportunities to hone their skills in programming and problem solving. NUMERICAL MATHEMATICS AND COMPUTING, 7E, International Edition also helps students learn about errors that inevitably accompany scientific computations and arms them with methods for detecting, predicting, and controlling these errors.
Publisher: Thomson Brooks/Cole
ISBN: 9781133491811
Category : Numerical analysis
Languages : en
Pages : 678
Book Description
Authors Ward Cheney and David Kincaid show students of science and engineering the potential computers have for solving numerical problems and give them ample opportunities to hone their skills in programming and problem solving. NUMERICAL MATHEMATICS AND COMPUTING, 7E, International Edition also helps students learn about errors that inevitably accompany scientific computations and arms them with methods for detecting, predicting, and controlling these errors.
Computer Aided Assessment of Mathematics
Author: Chris Sangwin
Publisher: OUP Oxford
ISBN: 0191635863
Category : Mathematics
Languages : en
Pages : 271
Book Description
Assessment is a key driver in mathematics education. This book examines computer aided assessment (CAA) of mathematics in which computer algebra systems (CAS) are used to establish the mathematical properties of expressions provided by students in response to questions. In order to automate such assessment, the relevant criteria must be encoded and, in articulating precisely the desired criteria, the teacher needs to think very carefully about the goals of the task. Hence CAA acts as a vehicle to examine assessment and mathematics education in detail and from a fresh perspective. One example is how it is natural for busy teachers to set only those questions that can be marked by hand in a straightforward way, even though the constraints of paper-based formats restrict what they do and why. There are other kinds of questions, such as those with non-unique correct answers, or where assessing the properties requires the marker themselves to undertake a significant computation. It is simply not sensible for a person to set these to large groups of students when marking by hand. However, such questions have their place and value in provoking thought and learning. This book, aimed at teachers in both schools and universities, explores how, in certain cases, different question types can be automatically assessed. Case studies of existing systems have been included to illustrate this in a concrete and practical way.
Publisher: OUP Oxford
ISBN: 0191635863
Category : Mathematics
Languages : en
Pages : 271
Book Description
Assessment is a key driver in mathematics education. This book examines computer aided assessment (CAA) of mathematics in which computer algebra systems (CAS) are used to establish the mathematical properties of expressions provided by students in response to questions. In order to automate such assessment, the relevant criteria must be encoded and, in articulating precisely the desired criteria, the teacher needs to think very carefully about the goals of the task. Hence CAA acts as a vehicle to examine assessment and mathematics education in detail and from a fresh perspective. One example is how it is natural for busy teachers to set only those questions that can be marked by hand in a straightforward way, even though the constraints of paper-based formats restrict what they do and why. There are other kinds of questions, such as those with non-unique correct answers, or where assessing the properties requires the marker themselves to undertake a significant computation. It is simply not sensible for a person to set these to large groups of students when marking by hand. However, such questions have their place and value in provoking thought and learning. This book, aimed at teachers in both schools and universities, explores how, in certain cases, different question types can be automatically assessed. Case studies of existing systems have been included to illustrate this in a concrete and practical way.
Foundation Mathematics for Computer Science
Author: John Vince
Publisher: Springer
ISBN: 3319214373
Category : Computers
Languages : en
Pages : 341
Book Description
John Vince describes a range of mathematical topics to provide a foundation for an undergraduate course in computer science, starting with a review of number systems and their relevance to digital computers, and finishing with differential and integral calculus. Readers will find that the author's visual approach will greatly improve their understanding as to why certain mathematical structures exist, together with how they are used in real-world applications. Each chapter includes full-colour illustrations to clarify the mathematical descriptions, and in some cases, equations are also coloured to reveal vital algebraic patterns. The numerous worked examples will consolidate comprehension of abstract mathematical concepts. Foundation Mathematics for Computer Science covers number systems, algebra, logic, trigonometry, coordinate systems, determinants, vectors, matrices, geometric matrix transforms, differential and integral calculus, and reveals the names of the mathematicians behind such inventions. During this journey, John Vince touches upon more esoteric topics such as quaternions, octonions, Grassmann algebra, Barycentric coordinates, transfinite sets and prime numbers. Whether you intend to pursue a career in programming, scientific visualisation, systems design, or real-time computing, you should find the author’s literary style refreshingly lucid and engaging, and prepare you for more advanced texts.
Publisher: Springer
ISBN: 3319214373
Category : Computers
Languages : en
Pages : 341
Book Description
John Vince describes a range of mathematical topics to provide a foundation for an undergraduate course in computer science, starting with a review of number systems and their relevance to digital computers, and finishing with differential and integral calculus. Readers will find that the author's visual approach will greatly improve their understanding as to why certain mathematical structures exist, together with how they are used in real-world applications. Each chapter includes full-colour illustrations to clarify the mathematical descriptions, and in some cases, equations are also coloured to reveal vital algebraic patterns. The numerous worked examples will consolidate comprehension of abstract mathematical concepts. Foundation Mathematics for Computer Science covers number systems, algebra, logic, trigonometry, coordinate systems, determinants, vectors, matrices, geometric matrix transforms, differential and integral calculus, and reveals the names of the mathematicians behind such inventions. During this journey, John Vince touches upon more esoteric topics such as quaternions, octonions, Grassmann algebra, Barycentric coordinates, transfinite sets and prime numbers. Whether you intend to pursue a career in programming, scientific visualisation, systems design, or real-time computing, you should find the author’s literary style refreshingly lucid and engaging, and prepare you for more advanced texts.
Mathematics and Computing
Author: Sk. Md. Abu Nayeem
Publisher:
ISBN: 9788184873214
Category : Mathematics
Languages : en
Pages : 0
Book Description
Consists of sixteen articles chosen from different thrust areas of research on mathematics and computing. Fuzzy mathematics has now become a tool for reconstructing the foundation of several mathematical structures. Some articles in this volume concentrate on fuzzy aspects of analysis (statistical convergence of sequences) and algebra (H-ideals in BCK/ BCI algebras, and matrices over distributive lattices). An article on modern algebra, discussing on endomorphism rings of reduced modules, and another article on some convolution properties of analytic functions possessing fractional derivatives are also included. The environmental pollution issues in the frameworks of dynamical systems and of fuzzy mathematics are discussed in two articles. Some selected articles on fluid mechanics, solid mechanics and astrophysics are included here, as these are considered as some key components of computational and applied mathematics.
Publisher:
ISBN: 9788184873214
Category : Mathematics
Languages : en
Pages : 0
Book Description
Consists of sixteen articles chosen from different thrust areas of research on mathematics and computing. Fuzzy mathematics has now become a tool for reconstructing the foundation of several mathematical structures. Some articles in this volume concentrate on fuzzy aspects of analysis (statistical convergence of sequences) and algebra (H-ideals in BCK/ BCI algebras, and matrices over distributive lattices). An article on modern algebra, discussing on endomorphism rings of reduced modules, and another article on some convolution properties of analytic functions possessing fractional derivatives are also included. The environmental pollution issues in the frameworks of dynamical systems and of fuzzy mathematics are discussed in two articles. Some selected articles on fluid mechanics, solid mechanics and astrophysics are included here, as these are considered as some key components of computational and applied mathematics.
Building Bridges
Author: Martin Grötschel
Publisher: Springer Science & Business Media
ISBN: 3540852212
Category : Mathematics
Languages : en
Pages : 536
Book Description
Discrete mathematics and theoretical computer science are closely linked research areas with strong impacts on applications and various other scientific disciplines. Both fields deeply cross fertilize each other. One of the persons who particularly contributed to building bridges between these and many other areas is László Lovász, a scholar whose outstanding scientific work has defined and shaped many research directions in the last 40 years. A number of friends and colleagues, all top authorities in their fields of expertise and all invited plenary speakers at one of two conferences in August 2008 in Hungary, both celebrating Lovász’s 60th birthday, have contributed their latest research papers to this volume. This collection of articles offers an excellent view on the state of combinatorics and related topics and will be of interest for experienced specialists as well as young researchers.
Publisher: Springer Science & Business Media
ISBN: 3540852212
Category : Mathematics
Languages : en
Pages : 536
Book Description
Discrete mathematics and theoretical computer science are closely linked research areas with strong impacts on applications and various other scientific disciplines. Both fields deeply cross fertilize each other. One of the persons who particularly contributed to building bridges between these and many other areas is László Lovász, a scholar whose outstanding scientific work has defined and shaped many research directions in the last 40 years. A number of friends and colleagues, all top authorities in their fields of expertise and all invited plenary speakers at one of two conferences in August 2008 in Hungary, both celebrating Lovász’s 60th birthday, have contributed their latest research papers to this volume. This collection of articles offers an excellent view on the state of combinatorics and related topics and will be of interest for experienced specialists as well as young researchers.
Modelling Computing Systems
Author: Faron Moller
Publisher:
ISBN:
Category :
Languages : en
Pages : 500
Book Description
This title explores concepts of games and strategies to provide a paradigm for understanding the nature of computation and provides an elementary introduction to the mathematics and modelling of computing systems through exercises and examples, giving readers the opportunities to test their understanding and broaden their knowledge.
Publisher:
ISBN:
Category :
Languages : en
Pages : 500
Book Description
This title explores concepts of games and strategies to provide a paradigm for understanding the nature of computation and provides an elementary introduction to the mathematics and modelling of computing systems through exercises and examples, giving readers the opportunities to test their understanding and broaden their knowledge.
Mathematics for Electrical Engineering and Computing
Author: Mary P Attenborough
Publisher: Elsevier
ISBN: 0080473407
Category : Mathematics
Languages : en
Pages : 563
Book Description
Mathematics for Electrical Engineering and Computing embraces many applications of modern mathematics, such as Boolean Algebra and Sets and Functions, and also teaches both discrete and continuous systems - particularly vital for Digital Signal Processing (DSP). In addition, as most modern engineers are required to study software, material suitable for Software Engineering - set theory, predicate and prepositional calculus, language and graph theory - is fully integrated into the book.Excessive technical detail and language are avoided, recognising that the real requirement for practising engineers is the need to understand the applications of mathematics in everyday engineering contexts. Emphasis is given to an appreciation of the fundamental concepts behind the mathematics, for problem solving and undertaking critical analysis of results, whether using a calculator or a computer.The text is backed up by numerous exercises and worked examples throughout, firmly rooted in engineering practice, ensuring that all mathematical theory introduced is directly relevant to real-world engineering. The book includes introductions to advanced topics such as Fourier analysis, vector calculus and random processes, also making this a suitable introductory text for second year undergraduates of electrical, electronic and computer engineering, undertaking engineering mathematics courses.Dr Attenborough is a former Senior Lecturer in the School of Electrical, Electronic and Information Engineering at South Bank University. She is currently Technical Director of The Webbery - Internet development company, Co. Donegal, Ireland. - Fundamental principles of mathematics introduced and applied in engineering practice, reinforced through over 300 examples directly relevant to real-world engineering
Publisher: Elsevier
ISBN: 0080473407
Category : Mathematics
Languages : en
Pages : 563
Book Description
Mathematics for Electrical Engineering and Computing embraces many applications of modern mathematics, such as Boolean Algebra and Sets and Functions, and also teaches both discrete and continuous systems - particularly vital for Digital Signal Processing (DSP). In addition, as most modern engineers are required to study software, material suitable for Software Engineering - set theory, predicate and prepositional calculus, language and graph theory - is fully integrated into the book.Excessive technical detail and language are avoided, recognising that the real requirement for practising engineers is the need to understand the applications of mathematics in everyday engineering contexts. Emphasis is given to an appreciation of the fundamental concepts behind the mathematics, for problem solving and undertaking critical analysis of results, whether using a calculator or a computer.The text is backed up by numerous exercises and worked examples throughout, firmly rooted in engineering practice, ensuring that all mathematical theory introduced is directly relevant to real-world engineering. The book includes introductions to advanced topics such as Fourier analysis, vector calculus and random processes, also making this a suitable introductory text for second year undergraduates of electrical, electronic and computer engineering, undertaking engineering mathematics courses.Dr Attenborough is a former Senior Lecturer in the School of Electrical, Electronic and Information Engineering at South Bank University. She is currently Technical Director of The Webbery - Internet development company, Co. Donegal, Ireland. - Fundamental principles of mathematics introduced and applied in engineering practice, reinforced through over 300 examples directly relevant to real-world engineering
Concrete Mathematics
Author: Ronald L. Graham
Publisher: Addison-Wesley Professional
ISBN: 0134389980
Category : Computers
Languages : en
Pages : 811
Book Description
This book introduces the mathematics that supports advanced computer programming and the analysis of algorithms. The primary aim of its well-known authors is to provide a solid and relevant base of mathematical skills - the skills needed to solve complex problems, to evaluate horrendous sums, and to discover subtle patterns in data. It is an indispensable text and reference not only for computer scientists - the authors themselves rely heavily on it! - but for serious users of mathematics in virtually every discipline. Concrete Mathematics is a blending of CONtinuous and disCRETE mathematics. "More concretely," the authors explain, "it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems." The subject matter is primarily an expansion of the Mathematical Preliminaries section in Knuth's classic Art of Computer Programming, but the style of presentation is more leisurely, and individual topics are covered more deeply. Several new topics have been added, and the most significant ideas have been traced to their historical roots. The book includes more than 500 exercises, divided into six categories. Complete answers are provided for all exercises, except research problems, making the book particularly valuable for self-study. Major topics include: Sums Recurrences Integer functions Elementary number theory Binomial coefficients Generating functions Discrete probability Asymptotic methods This second edition includes important new material about mechanical summation. In response to the widespread use of the first edition as a reference book, the bibliography and index have also been expanded, and additional nontrivial improvements can be found on almost every page. Readers will appreciate the informal style of Concrete Mathematics. Particularly enjoyable are the marginal graffiti contributed by students who have taken courses based on this material. The authors want to convey not only the importance of the techniques presented, but some of the fun in learning and using them.
Publisher: Addison-Wesley Professional
ISBN: 0134389980
Category : Computers
Languages : en
Pages : 811
Book Description
This book introduces the mathematics that supports advanced computer programming and the analysis of algorithms. The primary aim of its well-known authors is to provide a solid and relevant base of mathematical skills - the skills needed to solve complex problems, to evaluate horrendous sums, and to discover subtle patterns in data. It is an indispensable text and reference not only for computer scientists - the authors themselves rely heavily on it! - but for serious users of mathematics in virtually every discipline. Concrete Mathematics is a blending of CONtinuous and disCRETE mathematics. "More concretely," the authors explain, "it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems." The subject matter is primarily an expansion of the Mathematical Preliminaries section in Knuth's classic Art of Computer Programming, but the style of presentation is more leisurely, and individual topics are covered more deeply. Several new topics have been added, and the most significant ideas have been traced to their historical roots. The book includes more than 500 exercises, divided into six categories. Complete answers are provided for all exercises, except research problems, making the book particularly valuable for self-study. Major topics include: Sums Recurrences Integer functions Elementary number theory Binomial coefficients Generating functions Discrete probability Asymptotic methods This second edition includes important new material about mechanical summation. In response to the widespread use of the first edition as a reference book, the bibliography and index have also been expanded, and additional nontrivial improvements can be found on almost every page. Readers will appreciate the informal style of Concrete Mathematics. Particularly enjoyable are the marginal graffiti contributed by students who have taken courses based on this material. The authors want to convey not only the importance of the techniques presented, but some of the fun in learning and using them.