Author: A. S. Fokas
Publisher: World Scientific Publishing Company
ISBN: 9781860942303
Category : Mathematics
Languages : en
Pages : 326
Book Description
Mathematical physics has made enormous strides over the past few decades, with the emergence of many new disciplines and with revolutionary advances in old disciplines. One of the especially interesting features is the link between developments in mathematical physics and in pure mathematics. Many of the exciting advances in mathematics owe their origin to mathematical physics -- superstring theory, for example, has led to remarkable progress in geometry -- while very pure mathematics, such as number theory, has found unexpected applications. The beginning of a new millennium is an appropriate time to survey the present state of the field and look forward to likely advances in the future. In this book, leading experts give personal views on their subjects and on the wider field of mathematical physics. The topics covered range widely over the whole field, from quantum field theory to turbulence, from the classical three-body problem to non-equilibrium statistical mechanics.
Mathematical Physics 2000
Author: A. S. Fokas
Publisher: World Scientific Publishing Company
ISBN: 9781860942303
Category : Mathematics
Languages : en
Pages : 326
Book Description
Mathematical physics has made enormous strides over the past few decades, with the emergence of many new disciplines and with revolutionary advances in old disciplines. One of the especially interesting features is the link between developments in mathematical physics and in pure mathematics. Many of the exciting advances in mathematics owe their origin to mathematical physics -- superstring theory, for example, has led to remarkable progress in geometry -- while very pure mathematics, such as number theory, has found unexpected applications. The beginning of a new millennium is an appropriate time to survey the present state of the field and look forward to likely advances in the future. In this book, leading experts give personal views on their subjects and on the wider field of mathematical physics. The topics covered range widely over the whole field, from quantum field theory to turbulence, from the classical three-body problem to non-equilibrium statistical mechanics.
Publisher: World Scientific Publishing Company
ISBN: 9781860942303
Category : Mathematics
Languages : en
Pages : 326
Book Description
Mathematical physics has made enormous strides over the past few decades, with the emergence of many new disciplines and with revolutionary advances in old disciplines. One of the especially interesting features is the link between developments in mathematical physics and in pure mathematics. Many of the exciting advances in mathematics owe their origin to mathematical physics -- superstring theory, for example, has led to remarkable progress in geometry -- while very pure mathematics, such as number theory, has found unexpected applications. The beginning of a new millennium is an appropriate time to survey the present state of the field and look forward to likely advances in the future. In this book, leading experts give personal views on their subjects and on the wider field of mathematical physics. The topics covered range widely over the whole field, from quantum field theory to turbulence, from the classical three-body problem to non-equilibrium statistical mechanics.
The Functions of Mathematical Physics
Author: Harry Hochstadt
Publisher: Courier Corporation
ISBN: 0486168786
Category : Science
Languages : en
Pages : 354
Book Description
A modern classic, this clearly written, incisive textbook provides a comprehensive, detailed survey of the functions of mathematical physics, a field of study straddling the somewhat artificial boundary between pure and applied mathematics. In the 18th and 19th centuries, the theorists who devoted themselves to this field — pioneers such as Gauss, Euler, Fourier, Legendre, and Bessel — were searching for mathematical solutions to physical problems. Today, although most of the functions have practical applications, in areas ranging from the quantum-theoretical model of the atom to the vibrating membrane, some, such as those related to the theory of discontinuous groups, still remain of purely mathematical interest. Chapters One and Two examine orthogonal polynomials, with sections on such topics as the recurrence formula, the Christoffel-Darboux formula, the Weierstrass approximation theorem, and the application of Hermite polynomials to quantum mechanics. Chapter Three is devoted to the principal properties of the gamma function, including asymptotic expansions and Mellin-Barnes integrals. Chapter Four covers hypergeometric functions, including a review of linear differential equations with regular singular points, and a general method for finding integral representations. Chapters Five and Six are concerned with the Legendre functions and their use in the solutions of Laplace's equation in spherical coordinates, as well as problems in an n-dimension setting. Chapter Seven deals with confluent hypergeometric functions, and Chapter Eight examines, at length, the most important of these — the Bessel functions. Chapter Nine covers Hill's equations, including the expansion theorems.
Publisher: Courier Corporation
ISBN: 0486168786
Category : Science
Languages : en
Pages : 354
Book Description
A modern classic, this clearly written, incisive textbook provides a comprehensive, detailed survey of the functions of mathematical physics, a field of study straddling the somewhat artificial boundary between pure and applied mathematics. In the 18th and 19th centuries, the theorists who devoted themselves to this field — pioneers such as Gauss, Euler, Fourier, Legendre, and Bessel — were searching for mathematical solutions to physical problems. Today, although most of the functions have practical applications, in areas ranging from the quantum-theoretical model of the atom to the vibrating membrane, some, such as those related to the theory of discontinuous groups, still remain of purely mathematical interest. Chapters One and Two examine orthogonal polynomials, with sections on such topics as the recurrence formula, the Christoffel-Darboux formula, the Weierstrass approximation theorem, and the application of Hermite polynomials to quantum mechanics. Chapter Three is devoted to the principal properties of the gamma function, including asymptotic expansions and Mellin-Barnes integrals. Chapter Four covers hypergeometric functions, including a review of linear differential equations with regular singular points, and a general method for finding integral representations. Chapters Five and Six are concerned with the Legendre functions and their use in the solutions of Laplace's equation in spherical coordinates, as well as problems in an n-dimension setting. Chapter Seven deals with confluent hypergeometric functions, and Chapter Eight examines, at length, the most important of these — the Bessel functions. Chapter Nine covers Hill's equations, including the expansion theorems.
Methods for Solving Inverse Problems in Mathematical Physics
Author: Global Express Ltd. Co.
Publisher: CRC Press
ISBN: 9780824719876
Category : Mathematics
Languages : en
Pages : 736
Book Description
Developing an approach to the question of existence, uniqueness and stability of solutions, this work presents a systematic elaboration of the theory of inverse problems for all principal types of partial differential equations. It covers up-to-date methods of linear and nonlinear analysis, the theory of differential equations in Banach spaces, applications of functional analysis, and semigroup theory.
Publisher: CRC Press
ISBN: 9780824719876
Category : Mathematics
Languages : en
Pages : 736
Book Description
Developing an approach to the question of existence, uniqueness and stability of solutions, this work presents a systematic elaboration of the theory of inverse problems for all principal types of partial differential equations. It covers up-to-date methods of linear and nonlinear analysis, the theory of differential equations in Banach spaces, applications of functional analysis, and semigroup theory.
Fifty Years of Mathematical Physics
Author: Molin Ge
Publisher: World Scientific Publishing Company
ISBN: 9814340960
Category : Science
Languages : en
Pages : 596
Book Description
This unique volume summarizes with a historical perspective several of the major scientific achievements of Ludwig Faddeev, with a foreword by Nobel Laureate C N Yang. The volume that spans over fifty years of Faddeev's career begins where he started his own scientific research, in the subject of scattering theory and the three-body problem. It then continues to describe Faddeev's contributions to automorphic functions, followed by an extensive account of his many fundamental contributions to quantum field theory including his original article on ghosts with Popov. Faddeev's contributions to soliton theory and integrable models are then described, followed by a survey of his work on quantum groups. The final scientific section is devoted to Faddeev's contemporary research including articles on his long-term interest in constructing knotted solitons and understanding confinement. The volume concludes with his personal view on science and mathematical physics in particular.
Publisher: World Scientific Publishing Company
ISBN: 9814340960
Category : Science
Languages : en
Pages : 596
Book Description
This unique volume summarizes with a historical perspective several of the major scientific achievements of Ludwig Faddeev, with a foreword by Nobel Laureate C N Yang. The volume that spans over fifty years of Faddeev's career begins where he started his own scientific research, in the subject of scattering theory and the three-body problem. It then continues to describe Faddeev's contributions to automorphic functions, followed by an extensive account of his many fundamental contributions to quantum field theory including his original article on ghosts with Popov. Faddeev's contributions to soliton theory and integrable models are then described, followed by a survey of his work on quantum groups. The final scientific section is devoted to Faddeev's contemporary research including articles on his long-term interest in constructing knotted solitons and understanding confinement. The volume concludes with his personal view on science and mathematical physics in particular.
Methods of Mathematical Physics
Author: Harold Jeffreys
Publisher: Cambridge University Press
ISBN: 9780521664028
Category : Mathematics
Languages : en
Pages : 734
Book Description
This book is a reissue of classic textbook of mathematical methods.
Publisher: Cambridge University Press
ISBN: 9780521664028
Category : Mathematics
Languages : en
Pages : 734
Book Description
This book is a reissue of classic textbook of mathematical methods.
Introduction to Mathematical Statistical Physics
Author: Robert Adolʹfovich Minlos
Publisher: American Mathematical Soc.
ISBN: 0821813374
Category : Mathematics
Languages : en
Pages : 114
Book Description
This book presents a mathematically rigorous approach to the main ideas and phenomena of statistical physics. The introduction addresses the physical motivation, focusing on the basic concept of modern statistical physics, that is the notion of Gibbsian random fields. Properties of Gibbsian fields are analysed in two ranges of physical parameters: "regular" (corresponding to high-temperature and low-density regimes) where no phase transition is exhibited, and "singular" (low temperature regimes) where such transitions occur. Next, a detailed approach to the analysis of the phenomena of phase transitions of the first kind, the Pirogov-Sinai theory, is presented. The author discusses this theory in a general way and illustrates it with the example of a lattice gas with three types of particles. The conclusion gives a brief review of recent developments arising from this theory. The volume is written for the beginner, yet advanced students will benefit from it as well. The book will serve nicely as a supplementary textbook for course study. The prerequisites are an elementary knowledge of mechanics, probability theory and functional analysis.
Publisher: American Mathematical Soc.
ISBN: 0821813374
Category : Mathematics
Languages : en
Pages : 114
Book Description
This book presents a mathematically rigorous approach to the main ideas and phenomena of statistical physics. The introduction addresses the physical motivation, focusing on the basic concept of modern statistical physics, that is the notion of Gibbsian random fields. Properties of Gibbsian fields are analysed in two ranges of physical parameters: "regular" (corresponding to high-temperature and low-density regimes) where no phase transition is exhibited, and "singular" (low temperature regimes) where such transitions occur. Next, a detailed approach to the analysis of the phenomena of phase transitions of the first kind, the Pirogov-Sinai theory, is presented. The author discusses this theory in a general way and illustrates it with the example of a lattice gas with three types of particles. The conclusion gives a brief review of recent developments arising from this theory. The volume is written for the beginner, yet advanced students will benefit from it as well. The book will serve nicely as a supplementary textbook for course study. The prerequisites are an elementary knowledge of mechanics, probability theory and functional analysis.
XIVth International Congress on Mathematical Physics
Author: Jean-Claude Zambrini
Publisher: World Scientific
ISBN: 981256201X
Category : Mathematics
Languages : en
Pages : 720
Book Description
In 2003 the XIV International Congress on Mathematical Physics (ICMP) was held in Lisbon with more than 500 participants. Twelve plenary talks were given in various fields of Mathematical Physics: E Carlen On the relation between the Master equation and the Boltzmann Equation in Kinetic Theory; A Chenciner Symmetries and "simple" solutions of the classical n-body problem; M J Esteban Relativistic models in atomic and molecular physics; K Fredenhagen Locally covariant quantum field theory; K Gawedzki Simple models of turbulent transport; I Krichever Algebraic versus Liouville integrability of the soliton systems; R V Moody Long-range order and diffraction in mathematical quasicrystals; S Smirnov Critical percolation and conformal invariance; J P Solovej The energy of charged matter; V Schomerus Strings through the microscope; C Villani Entropy production and convergence to equilibrium for the Boltzmann equation; D Voiculescu Aspects of free probability. ICMP 2003 also included invited talks by: H Eliasson, W Schlag, M Shub, P Dorey, J M Maillet, K McLaughlin, A Nakayashiki, A Okounkov, G M Graf, R Seiringer, S Teufel, J Imbrie, D Ioffe, H Knoerrer, D Bernard, J Dimock, C J Fewster, T Thiemann, F Benatti, D Evans, Y Kawahigashi, C King, B Julia, N Nekrasov, P Townsend, D Bambusi, M Hairer, V Kaloshin, G Schneider, A Shirikyan, P Bizon, H Bray, H Ringstrom, L Barreira, L Rey-Bellet, C Forster, P Gaspard, F Golse, T Chen, P Exner, T Ichinose, V Kostrykin, E Skibsted, G Stolz, D Yafaev, V A Zagrebnov, R Leandre, T Levy, S Mazzuchi, H Owhadi, M Roeckner and A Sengupta. Key Features Provides a list of the most recent progress in all fields of Mathematical Physics; Written by the best international experts in these fields; Indicates the "hot" directions of research in Mathematical Physics for years to come; Readership: Mathematical physicists, mathematicians and theoretical physicists.
Publisher: World Scientific
ISBN: 981256201X
Category : Mathematics
Languages : en
Pages : 720
Book Description
In 2003 the XIV International Congress on Mathematical Physics (ICMP) was held in Lisbon with more than 500 participants. Twelve plenary talks were given in various fields of Mathematical Physics: E Carlen On the relation between the Master equation and the Boltzmann Equation in Kinetic Theory; A Chenciner Symmetries and "simple" solutions of the classical n-body problem; M J Esteban Relativistic models in atomic and molecular physics; K Fredenhagen Locally covariant quantum field theory; K Gawedzki Simple models of turbulent transport; I Krichever Algebraic versus Liouville integrability of the soliton systems; R V Moody Long-range order and diffraction in mathematical quasicrystals; S Smirnov Critical percolation and conformal invariance; J P Solovej The energy of charged matter; V Schomerus Strings through the microscope; C Villani Entropy production and convergence to equilibrium for the Boltzmann equation; D Voiculescu Aspects of free probability. ICMP 2003 also included invited talks by: H Eliasson, W Schlag, M Shub, P Dorey, J M Maillet, K McLaughlin, A Nakayashiki, A Okounkov, G M Graf, R Seiringer, S Teufel, J Imbrie, D Ioffe, H Knoerrer, D Bernard, J Dimock, C J Fewster, T Thiemann, F Benatti, D Evans, Y Kawahigashi, C King, B Julia, N Nekrasov, P Townsend, D Bambusi, M Hairer, V Kaloshin, G Schneider, A Shirikyan, P Bizon, H Bray, H Ringstrom, L Barreira, L Rey-Bellet, C Forster, P Gaspard, F Golse, T Chen, P Exner, T Ichinose, V Kostrykin, E Skibsted, G Stolz, D Yafaev, V A Zagrebnov, R Leandre, T Levy, S Mazzuchi, H Owhadi, M Roeckner and A Sengupta. Key Features Provides a list of the most recent progress in all fields of Mathematical Physics; Written by the best international experts in these fields; Indicates the "hot" directions of research in Mathematical Physics for years to come; Readership: Mathematical physicists, mathematicians and theoretical physicists.
Clifford Algebras and their Applications in Mathematical Physics
Author: Rafał Abłamowicz
Publisher: Springer Science & Business Media
ISBN: 9780817641825
Category : Mathematics
Languages : en
Pages : 500
Book Description
The first part of a two-volume set concerning the field of Clifford (geometric) algebra, this work consists of thematically organized chapters that provide a broad overview of cutting-edge topics in mathematical physics and the physical applications of Clifford algebras. algebras and their applications in physics. Algebraic geometry, cohomology, non-communicative spaces, q-deformations and the related quantum groups, and projective geometry provide the basis for algebraic topics covered. Physical applications and extensions of physical theories such as the theory of quaternionic spin, a projective theory of hadron transformation laws, and electron scattering are also presented, showing the broad applicability of Clifford geometric algebras in solving physical problems. Treatment of the structure theory of quantum Clifford algebras, the connection to logic, group representations, and computational techniques including symbolic calculations and theorem proving rounds out the presentation.
Publisher: Springer Science & Business Media
ISBN: 9780817641825
Category : Mathematics
Languages : en
Pages : 500
Book Description
The first part of a two-volume set concerning the field of Clifford (geometric) algebra, this work consists of thematically organized chapters that provide a broad overview of cutting-edge topics in mathematical physics and the physical applications of Clifford algebras. algebras and their applications in physics. Algebraic geometry, cohomology, non-communicative spaces, q-deformations and the related quantum groups, and projective geometry provide the basis for algebraic topics covered. Physical applications and extensions of physical theories such as the theory of quaternionic spin, a projective theory of hadron transformation laws, and electron scattering are also presented, showing the broad applicability of Clifford geometric algebras in solving physical problems. Treatment of the structure theory of quantum Clifford algebras, the connection to logic, group representations, and computational techniques including symbolic calculations and theorem proving rounds out the presentation.
Mathematical Analysis of Physical Problems
Author: Philip Russell Wallace
Publisher: Courier Corporation
ISBN: 0486646769
Category : Science
Languages : en
Pages : 644
Book Description
This mathematical reference for theoretical physics employs common techniques and concepts to link classical and modern physics. It provides the necessary mathematics to solve most of the problems. Topics include the vibrating string, linear vector spaces, the potential equation, problems of diffusion and attenuation, probability and stochastic processes, and much more. 1972 edition.
Publisher: Courier Corporation
ISBN: 0486646769
Category : Science
Languages : en
Pages : 644
Book Description
This mathematical reference for theoretical physics employs common techniques and concepts to link classical and modern physics. It provides the necessary mathematics to solve most of the problems. Topics include the vibrating string, linear vector spaces, the potential equation, problems of diffusion and attenuation, probability and stochastic processes, and much more. 1972 edition.
An Introduction to Mathematical Physics
Author: Robert Alexander Houstoun
Publisher:
ISBN:
Category : Mathematical physics
Languages : en
Pages : 222
Book Description
Publisher:
ISBN:
Category : Mathematical physics
Languages : en
Pages : 222
Book Description