Author: Ivo Babuska
Publisher: Springer Science & Business Media
ISBN: 3642562884
Category : Computers
Languages : en
Pages : 300
Book Description
The first international symposium on mathematical foundations of the finite element method was held at the University of Maryland in 1973. During the last three decades there has been great progress in the theory and practice of solving partial differential equations, and research has extended in various directions. Full-scale nonlinear problems have come within the range of nu merical simulation. The importance of mathematical modeling and analysis in science and engineering is steadily increasing. In addition, new possibili ties of analysing the reliability of computations have appeared. Many other developments have occurred: these are only the most noteworthy. This book is the record of the proceedings of the International Sympo sium on Mathematical Modeling and Numerical Simulation in Continuum Mechanics, held in Yamaguchi, Japan from 29 September to 3 October 2000. The topics covered by the symposium ranged from solids to fluids, and in cluded both mathematical and computational analysis of phenomena and algorithms. Twenty-one invited talks were delivered at the symposium. This volume includes almost all of them, and expresses aspects of the progress mentioned above. All the papers were individually refereed. We hope that this volume will be a stepping-stone for further developments in this field.
Mathematical Modeling and Numerical Simulation in Continuum Mechanics
Author: Ivo Babuska
Publisher: Springer Science & Business Media
ISBN: 3642562884
Category : Computers
Languages : en
Pages : 300
Book Description
The first international symposium on mathematical foundations of the finite element method was held at the University of Maryland in 1973. During the last three decades there has been great progress in the theory and practice of solving partial differential equations, and research has extended in various directions. Full-scale nonlinear problems have come within the range of nu merical simulation. The importance of mathematical modeling and analysis in science and engineering is steadily increasing. In addition, new possibili ties of analysing the reliability of computations have appeared. Many other developments have occurred: these are only the most noteworthy. This book is the record of the proceedings of the International Sympo sium on Mathematical Modeling and Numerical Simulation in Continuum Mechanics, held in Yamaguchi, Japan from 29 September to 3 October 2000. The topics covered by the symposium ranged from solids to fluids, and in cluded both mathematical and computational analysis of phenomena and algorithms. Twenty-one invited talks were delivered at the symposium. This volume includes almost all of them, and expresses aspects of the progress mentioned above. All the papers were individually refereed. We hope that this volume will be a stepping-stone for further developments in this field.
Publisher: Springer Science & Business Media
ISBN: 3642562884
Category : Computers
Languages : en
Pages : 300
Book Description
The first international symposium on mathematical foundations of the finite element method was held at the University of Maryland in 1973. During the last three decades there has been great progress in the theory and practice of solving partial differential equations, and research has extended in various directions. Full-scale nonlinear problems have come within the range of nu merical simulation. The importance of mathematical modeling and analysis in science and engineering is steadily increasing. In addition, new possibili ties of analysing the reliability of computations have appeared. Many other developments have occurred: these are only the most noteworthy. This book is the record of the proceedings of the International Sympo sium on Mathematical Modeling and Numerical Simulation in Continuum Mechanics, held in Yamaguchi, Japan from 29 September to 3 October 2000. The topics covered by the symposium ranged from solids to fluids, and in cluded both mathematical and computational analysis of phenomena and algorithms. Twenty-one invited talks were delivered at the symposium. This volume includes almost all of them, and expresses aspects of the progress mentioned above. All the papers were individually refereed. We hope that this volume will be a stepping-stone for further developments in this field.
Mathematical Modeling in Continuum Mechanics
Author: Roger Temam
Publisher: Cambridge University Press
ISBN: 1139443216
Category : Science
Languages : en
Pages : 356
Book Description
Temam and Miranville present core topics within the general themes of fluid and solid mechanics. The brisk style allows the text to cover a wide range of topics including viscous flow, magnetohydrodynamics, atmospheric flows, shock equations, turbulence, nonlinear solid mechanics, solitons, and the nonlinear Schrödinger equation. This second edition will be a unique resource for those studying continuum mechanics at the advanced undergraduate and beginning graduate level whether in engineering, mathematics, physics or the applied sciences. Exercises and hints for solutions have been added to the majority of chapters, and the final part on solid mechanics has been substantially expanded. These additions have now made it appropriate for use as a textbook, but it also remains an ideal reference book for students and anyone interested in continuum mechanics.
Publisher: Cambridge University Press
ISBN: 1139443216
Category : Science
Languages : en
Pages : 356
Book Description
Temam and Miranville present core topics within the general themes of fluid and solid mechanics. The brisk style allows the text to cover a wide range of topics including viscous flow, magnetohydrodynamics, atmospheric flows, shock equations, turbulence, nonlinear solid mechanics, solitons, and the nonlinear Schrödinger equation. This second edition will be a unique resource for those studying continuum mechanics at the advanced undergraduate and beginning graduate level whether in engineering, mathematics, physics or the applied sciences. Exercises and hints for solutions have been added to the majority of chapters, and the final part on solid mechanics has been substantially expanded. These additions have now made it appropriate for use as a textbook, but it also remains an ideal reference book for students and anyone interested in continuum mechanics.
Structures Under Crash and Impact
Author: Stefan Hiermaier
Publisher: Springer Science & Business Media
ISBN: 0387738630
Category : Science
Languages : en
Pages : 416
Book Description
This book examines the testing and modeling of materials and structures under dynamic loading conditions. Readers get an in-depth analysis of the current mathematical modeling and simulation tools available for a variety of materials, alongside discussions of the benefits and limitations of these tools in industrial design. Following a logical and well organized structure, this volume uniquely combines experimental procedures with numerical simulation, and provides many examples.
Publisher: Springer Science & Business Media
ISBN: 0387738630
Category : Science
Languages : en
Pages : 416
Book Description
This book examines the testing and modeling of materials and structures under dynamic loading conditions. Readers get an in-depth analysis of the current mathematical modeling and simulation tools available for a variety of materials, alongside discussions of the benefits and limitations of these tools in industrial design. Following a logical and well organized structure, this volume uniquely combines experimental procedures with numerical simulation, and provides many examples.
An Introduction to Mathematical Modeling
Author: J. Tinsley Oden
Publisher: John Wiley & Sons
ISBN: 1118105745
Category : Mathematics
Languages : en
Pages : 348
Book Description
A modern approach to mathematical modeling, featuring unique applications from the field of mechanics An Introduction to Mathematical Modeling: A Course in Mechanics is designed to survey the mathematical models that form the foundations of modern science and incorporates examples that illustrate how the most successful models arise from basic principles in modern and classical mathematical physics. Written by a world authority on mathematical theory and computational mechanics, the book presents an account of continuum mechanics, electromagnetic field theory, quantum mechanics, and statistical mechanics for readers with varied backgrounds in engineering, computer science, mathematics, and physics. The author streamlines a comprehensive understanding of the topic in three clearly organized sections: Nonlinear Continuum Mechanics introduces kinematics as well as force and stress in deformable bodies; mass and momentum; balance of linear and angular momentum; conservation of energy; and constitutive equations Electromagnetic Field Theory and Quantum Mechanics contains a brief account of electromagnetic wave theory and Maxwell's equations as well as an introductory account of quantum mechanics with related topics including ab initio methods and Spin and Pauli's principles Statistical Mechanics presents an introduction to statistical mechanics of systems in thermodynamic equilibrium as well as continuum mechanics, quantum mechanics, and molecular dynamics Each part of the book concludes with exercise sets that allow readers to test their understanding of the presented material. Key theorems and fundamental equations are highlighted throughout, and an extensive bibliography outlines resources for further study. Extensively class-tested to ensure an accessible presentation, An Introduction to Mathematical Modeling is an excellent book for courses on introductory mathematical modeling and statistical mechanics at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for professionals working in the areas of modeling and simulation, physics, and computational engineering.
Publisher: John Wiley & Sons
ISBN: 1118105745
Category : Mathematics
Languages : en
Pages : 348
Book Description
A modern approach to mathematical modeling, featuring unique applications from the field of mechanics An Introduction to Mathematical Modeling: A Course in Mechanics is designed to survey the mathematical models that form the foundations of modern science and incorporates examples that illustrate how the most successful models arise from basic principles in modern and classical mathematical physics. Written by a world authority on mathematical theory and computational mechanics, the book presents an account of continuum mechanics, electromagnetic field theory, quantum mechanics, and statistical mechanics for readers with varied backgrounds in engineering, computer science, mathematics, and physics. The author streamlines a comprehensive understanding of the topic in three clearly organized sections: Nonlinear Continuum Mechanics introduces kinematics as well as force and stress in deformable bodies; mass and momentum; balance of linear and angular momentum; conservation of energy; and constitutive equations Electromagnetic Field Theory and Quantum Mechanics contains a brief account of electromagnetic wave theory and Maxwell's equations as well as an introductory account of quantum mechanics with related topics including ab initio methods and Spin and Pauli's principles Statistical Mechanics presents an introduction to statistical mechanics of systems in thermodynamic equilibrium as well as continuum mechanics, quantum mechanics, and molecular dynamics Each part of the book concludes with exercise sets that allow readers to test their understanding of the presented material. Key theorems and fundamental equations are highlighted throughout, and an extensive bibliography outlines resources for further study. Extensively class-tested to ensure an accessible presentation, An Introduction to Mathematical Modeling is an excellent book for courses on introductory mathematical modeling and statistical mechanics at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for professionals working in the areas of modeling and simulation, physics, and computational engineering.
Mathematical Modelling in Solid Mechanics
Author: Francesco dell'Isola
Publisher: Springer
ISBN: 9811037647
Category : Science
Languages : en
Pages : 327
Book Description
This book presents new research results in multidisciplinary fields of mathematical and numerical modelling in mechanics. The chapters treat the topics: mathematical modelling in solid, fluid and contact mechanics nonconvex variational analysis with emphasis to nonlinear solid and structural mechanics numerical modelling of problems with non-smooth constitutive laws, approximation of variational and hemivariational inequalities, numerical analysis of discrete schemes, numerical methods and the corresponding algorithms, applications to mechanical engineering numerical aspects of non-smooth mechanics, with emphasis on developing accurate and reliable computational tools mechanics of fibre-reinforced materials behaviour of elasto-plastic materials accounting for the microstructural defects definition of structural defects based on the differential geometry concepts or on the atomistic basis interaction between phase transformation and dislocations at nano-scale energetic arguments bifurcation and post-buckling analysis of elasto-plastic structures engineering optimization and design, global optimization and related algorithms The book presents selected papers presented at ETAMM 2016. It includes new and original results written by internationally recognized specialists.
Publisher: Springer
ISBN: 9811037647
Category : Science
Languages : en
Pages : 327
Book Description
This book presents new research results in multidisciplinary fields of mathematical and numerical modelling in mechanics. The chapters treat the topics: mathematical modelling in solid, fluid and contact mechanics nonconvex variational analysis with emphasis to nonlinear solid and structural mechanics numerical modelling of problems with non-smooth constitutive laws, approximation of variational and hemivariational inequalities, numerical analysis of discrete schemes, numerical methods and the corresponding algorithms, applications to mechanical engineering numerical aspects of non-smooth mechanics, with emphasis on developing accurate and reliable computational tools mechanics of fibre-reinforced materials behaviour of elasto-plastic materials accounting for the microstructural defects definition of structural defects based on the differential geometry concepts or on the atomistic basis interaction between phase transformation and dislocations at nano-scale energetic arguments bifurcation and post-buckling analysis of elasto-plastic structures engineering optimization and design, global optimization and related algorithms The book presents selected papers presented at ETAMM 2016. It includes new and original results written by internationally recognized specialists.
Continuum Damage Mechanics
Author: Sumio Murakami
Publisher: Springer Science & Business Media
ISBN: 9400726651
Category : Technology & Engineering
Languages : en
Pages : 420
Book Description
Recent developments in engineering and technology have brought about serious and enlarged demands for reliability, safety and economy in wide range of fields such as aeronautics, nuclear engineering, civil and structural engineering, automotive and production industry. This, in turn, has caused more interest in continuum damage mechanics and its engineering applications. This book aims to give a concise overview of the current state of damage mechanics, and then to show the fascinating possibility of this promising branch of mechanics, and to provide researchers, engineers and graduate students with an intelligible and self-contained textbook. The book consists of two parts and an appendix. Part I is concerned with the foundation of continuum damage mechanics. Basic concepts of material damage and the mechanical representation of damage state of various kinds are described in Chapters 1 and 2. In Chapters 3-5, irreversible thermodynamics, thermodynamic constitutive theory and its application to the modeling of the constitutive and the evolution equations of damaged materials are descried as a systematic basis for the subsequent development throughout the book. Part II describes the application of the fundamental theories developed in Part I to typical damage and fracture problems encountered in various fields of the current engineering. Important engineering aspects of elastic-plastic or ductile damage, their damage mechanics modeling and their further refinement are first discussed in Chapter 6. Chapters 7 and 8 are concerned with the modeling of fatigue, creep, creep-fatigue and their engineering application. Damage mechanics modeling of complicated crack closure behavior in elastic-brittle and composite materials are discussed in Chapters 9 and 10. In Chapter 11, applicability of the local approach to fracture by means of damage mechanics and finite element method, and the ensuing mathematical and numerical problems are briefly discussed. A proper understanding of the subject matter requires knowledge of tensor algebra and tensor calculus. At the end of this book, therefore, the foundations of tensor analysis are presented in the Appendix, especially for readers with insufficient mathematical background, but with keen interest in this exciting field of mechanics.
Publisher: Springer Science & Business Media
ISBN: 9400726651
Category : Technology & Engineering
Languages : en
Pages : 420
Book Description
Recent developments in engineering and technology have brought about serious and enlarged demands for reliability, safety and economy in wide range of fields such as aeronautics, nuclear engineering, civil and structural engineering, automotive and production industry. This, in turn, has caused more interest in continuum damage mechanics and its engineering applications. This book aims to give a concise overview of the current state of damage mechanics, and then to show the fascinating possibility of this promising branch of mechanics, and to provide researchers, engineers and graduate students with an intelligible and self-contained textbook. The book consists of two parts and an appendix. Part I is concerned with the foundation of continuum damage mechanics. Basic concepts of material damage and the mechanical representation of damage state of various kinds are described in Chapters 1 and 2. In Chapters 3-5, irreversible thermodynamics, thermodynamic constitutive theory and its application to the modeling of the constitutive and the evolution equations of damaged materials are descried as a systematic basis for the subsequent development throughout the book. Part II describes the application of the fundamental theories developed in Part I to typical damage and fracture problems encountered in various fields of the current engineering. Important engineering aspects of elastic-plastic or ductile damage, their damage mechanics modeling and their further refinement are first discussed in Chapter 6. Chapters 7 and 8 are concerned with the modeling of fatigue, creep, creep-fatigue and their engineering application. Damage mechanics modeling of complicated crack closure behavior in elastic-brittle and composite materials are discussed in Chapters 9 and 10. In Chapter 11, applicability of the local approach to fracture by means of damage mechanics and finite element method, and the ensuing mathematical and numerical problems are briefly discussed. A proper understanding of the subject matter requires knowledge of tensor algebra and tensor calculus. At the end of this book, therefore, the foundations of tensor analysis are presented in the Appendix, especially for readers with insufficient mathematical background, but with keen interest in this exciting field of mechanics.
Mathematical Modeling
Author: Christof Eck
Publisher: Springer
ISBN: 3319551612
Category : Mathematics
Languages : en
Pages : 519
Book Description
Mathematical models are the decisive tool to explain and predict phenomena in the natural and engineering sciences. With this book readers will learn to derive mathematical models which help to understand real world phenomena. At the same time a wealth of important examples for the abstract concepts treated in the curriculum of mathematics degrees are given. An essential feature of this book is that mathematical structures are used as an ordering principle and not the fields of application. Methods from linear algebra, analysis and the theory of ordinary and partial differential equations are thoroughly introduced and applied in the modeling process. Examples of applications in the fields electrical networks, chemical reaction dynamics, population dynamics, fluid dynamics, elasticity theory and crystal growth are treated comprehensively.
Publisher: Springer
ISBN: 3319551612
Category : Mathematics
Languages : en
Pages : 519
Book Description
Mathematical models are the decisive tool to explain and predict phenomena in the natural and engineering sciences. With this book readers will learn to derive mathematical models which help to understand real world phenomena. At the same time a wealth of important examples for the abstract concepts treated in the curriculum of mathematics degrees are given. An essential feature of this book is that mathematical structures are used as an ordering principle and not the fields of application. Methods from linear algebra, analysis and the theory of ordinary and partial differential equations are thoroughly introduced and applied in the modeling process. Examples of applications in the fields electrical networks, chemical reaction dynamics, population dynamics, fluid dynamics, elasticity theory and crystal growth are treated comprehensively.
Tensor Analysis and Continuum Mechanics
Author: Wilhelm Flügge
Publisher: Springer Science & Business Media
ISBN: 3642883826
Category : Science
Languages : en
Pages : 215
Book Description
Through several centuries there has been a lively interaction between mathematics and mechanics. On the one side, mechanics has used mathemat ics to formulate the basic laws and to apply them to a host of problems that call for the quantitative prediction of the consequences of some action. On the other side, the needs of mechanics have stimulated the development of mathematical concepts. Differential calculus grew out of the needs of Newtonian dynamics; vector algebra was developed as a means . to describe force systems; vector analysis, to study velocity fields and force fields; and the calcul~s of variations has evolved from the energy principles of mechan ics. In recent times the theory of tensors has attracted the attention of the mechanics people. Its very name indicates its origin in the theory of elasticity. For a long time little use has been made of it in this area, but in the last decade its usefulness in the mechanics of continuous media has been widely recognized. While the undergraduate textbook literature in this country was becoming "vectorized" (lagging almost half a century behind the development in Europe), books dealing with various aspects of continuum mechanics took to tensors like fish to water. Since many authors were not sure whether their readers were sufficiently familiar with tensors~ they either added' a chapter on tensors or wrote a separate book on the subject.
Publisher: Springer Science & Business Media
ISBN: 3642883826
Category : Science
Languages : en
Pages : 215
Book Description
Through several centuries there has been a lively interaction between mathematics and mechanics. On the one side, mechanics has used mathemat ics to formulate the basic laws and to apply them to a host of problems that call for the quantitative prediction of the consequences of some action. On the other side, the needs of mechanics have stimulated the development of mathematical concepts. Differential calculus grew out of the needs of Newtonian dynamics; vector algebra was developed as a means . to describe force systems; vector analysis, to study velocity fields and force fields; and the calcul~s of variations has evolved from the energy principles of mechan ics. In recent times the theory of tensors has attracted the attention of the mechanics people. Its very name indicates its origin in the theory of elasticity. For a long time little use has been made of it in this area, but in the last decade its usefulness in the mechanics of continuous media has been widely recognized. While the undergraduate textbook literature in this country was becoming "vectorized" (lagging almost half a century behind the development in Europe), books dealing with various aspects of continuum mechanics took to tensors like fish to water. Since many authors were not sure whether their readers were sufficiently familiar with tensors~ they either added' a chapter on tensors or wrote a separate book on the subject.
Automatic Differentiation: Applications, Theory, and Implementations
Author: H. Martin Bücker
Publisher: Springer Science & Business Media
ISBN: 3540284389
Category : Computers
Languages : en
Pages : 370
Book Description
Covers the state of the art in automatic differentiation theory and practice. Intended for computational scientists and engineers, this book aims to provide insight into effective strategies for using automatic differentiation for design optimization, sensitivity analysis, and uncertainty quantification.
Publisher: Springer Science & Business Media
ISBN: 3540284389
Category : Computers
Languages : en
Pages : 370
Book Description
Covers the state of the art in automatic differentiation theory and practice. Intended for computational scientists and engineers, this book aims to provide insight into effective strategies for using automatic differentiation for design optimization, sensitivity analysis, and uncertainty quantification.
Mathematics Applied to Continuum Mechanics
Author: Lee A. Segel
Publisher: SIAM
ISBN: 0898716209
Category : Science
Languages : en
Pages : 598
Book Description
This classic work gives an excellent overview of the subject, with an emphasis on clarity, explanation, and motivation. Extensive exercises and a valuable section containing hints and answers make this an excellent text for both classroom use and independent study.
Publisher: SIAM
ISBN: 0898716209
Category : Science
Languages : en
Pages : 598
Book Description
This classic work gives an excellent overview of the subject, with an emphasis on clarity, explanation, and motivation. Extensive exercises and a valuable section containing hints and answers make this an excellent text for both classroom use and independent study.