Author: Vladimir A. Kuznetsov
Publisher: Frontiers Media SA
ISBN: 2832550061
Category : Medical
Languages : en
Pages : 121
Book Description
Cancer is a complex adaptive dynamic system that causes both local and systemic failures in the patient. Cancer is caused by a number of gain-of-function and loss-of-function events, that lead to cells proliferating without control by the host organism over time. In cancer, the immune system modulates cancer cell population heterogeneity and plays a crucial role in disease outcomes. The immune system itself also generates multiple clones of different cell types, with some clones proliferating quickly and maturing into effector cells. By creating regulatory signals and their networks, and generating effector cells and molecules, the immune system recognizes and kills abnormal cells. Anti-cancer immune mechanisms are realized as multi-layer, nonlinear cellular and molecular interactions. A number of factors determine the outcome of immune system-tumor interactions, including cancer-associated antigens, immune cells, and host organisms.
Mathematical Modeling and Computational Predictions in Oncoimmunology
Author: Vladimir A. Kuznetsov
Publisher: Frontiers Media SA
ISBN: 2832550061
Category : Medical
Languages : en
Pages : 121
Book Description
Cancer is a complex adaptive dynamic system that causes both local and systemic failures in the patient. Cancer is caused by a number of gain-of-function and loss-of-function events, that lead to cells proliferating without control by the host organism over time. In cancer, the immune system modulates cancer cell population heterogeneity and plays a crucial role in disease outcomes. The immune system itself also generates multiple clones of different cell types, with some clones proliferating quickly and maturing into effector cells. By creating regulatory signals and their networks, and generating effector cells and molecules, the immune system recognizes and kills abnormal cells. Anti-cancer immune mechanisms are realized as multi-layer, nonlinear cellular and molecular interactions. A number of factors determine the outcome of immune system-tumor interactions, including cancer-associated antigens, immune cells, and host organisms.
Publisher: Frontiers Media SA
ISBN: 2832550061
Category : Medical
Languages : en
Pages : 121
Book Description
Cancer is a complex adaptive dynamic system that causes both local and systemic failures in the patient. Cancer is caused by a number of gain-of-function and loss-of-function events, that lead to cells proliferating without control by the host organism over time. In cancer, the immune system modulates cancer cell population heterogeneity and plays a crucial role in disease outcomes. The immune system itself also generates multiple clones of different cell types, with some clones proliferating quickly and maturing into effector cells. By creating regulatory signals and their networks, and generating effector cells and molecules, the immune system recognizes and kills abnormal cells. Anti-cancer immune mechanisms are realized as multi-layer, nonlinear cellular and molecular interactions. A number of factors determine the outcome of immune system-tumor interactions, including cancer-associated antigens, immune cells, and host organisms.
Advances in Mathematical and Computational Oncology
Author: Doron Levy
Publisher: Frontiers Media SA
ISBN: 2889741788
Category : Science
Languages : en
Pages : 337
Book Description
Publisher: Frontiers Media SA
ISBN: 2889741788
Category : Science
Languages : en
Pages : 337
Book Description
Advances in mathematical and computational oncology, volume III
Author: George Bebis
Publisher: Frontiers Media SA
ISBN: 2832536646
Category : Medical
Languages : en
Pages : 374
Book Description
Publisher: Frontiers Media SA
ISBN: 2832536646
Category : Medical
Languages : en
Pages : 374
Book Description
Computational Systems Biology of Cancer
Author: Emmanuel Barillot
Publisher: CRC Press
ISBN: 1439831440
Category : Science
Languages : en
Pages : 463
Book Description
The future of cancer research and the development of new therapeutic strategies rely on our ability to convert biological and clinical questions into mathematical models—integrating our knowledge of tumour progression mechanisms with the tsunami of information brought by high-throughput technologies such as microarrays and next-generation sequencing. Offering promising insights on how to defeat cancer, the emerging field of systems biology captures the complexity of biological phenomena using mathematical and computational tools. Novel Approaches to Fighting Cancer Drawn from the authors’ decade-long work in the cancer computational systems biology laboratory at Institut Curie (Paris, France), Computational Systems Biology of Cancer explains how to apply computational systems biology approaches to cancer research. The authors provide proven techniques and tools for cancer bioinformatics and systems biology research. Effectively Use Algorithmic Methods and Bioinformatics Tools in Real Biological Applications Suitable for readers in both the computational and life sciences, this self-contained guide assumes very limited background in biology, mathematics, and computer science. It explores how computational systems biology can help fight cancer in three essential aspects: Categorising tumours Finding new targets Designing improved and tailored therapeutic strategies Each chapter introduces a problem, presents applicable concepts and state-of-the-art methods, describes existing tools, illustrates applications using real cases, lists publically available data and software, and includes references to further reading. Some chapters also contain exercises. Figures from the text and scripts/data for reproducing a breast cancer data analysis are available at www.cancer-systems-biology.net.
Publisher: CRC Press
ISBN: 1439831440
Category : Science
Languages : en
Pages : 463
Book Description
The future of cancer research and the development of new therapeutic strategies rely on our ability to convert biological and clinical questions into mathematical models—integrating our knowledge of tumour progression mechanisms with the tsunami of information brought by high-throughput technologies such as microarrays and next-generation sequencing. Offering promising insights on how to defeat cancer, the emerging field of systems biology captures the complexity of biological phenomena using mathematical and computational tools. Novel Approaches to Fighting Cancer Drawn from the authors’ decade-long work in the cancer computational systems biology laboratory at Institut Curie (Paris, France), Computational Systems Biology of Cancer explains how to apply computational systems biology approaches to cancer research. The authors provide proven techniques and tools for cancer bioinformatics and systems biology research. Effectively Use Algorithmic Methods and Bioinformatics Tools in Real Biological Applications Suitable for readers in both the computational and life sciences, this self-contained guide assumes very limited background in biology, mathematics, and computer science. It explores how computational systems biology can help fight cancer in three essential aspects: Categorising tumours Finding new targets Designing improved and tailored therapeutic strategies Each chapter introduces a problem, presents applicable concepts and state-of-the-art methods, describes existing tools, illustrates applications using real cases, lists publically available data and software, and includes references to further reading. Some chapters also contain exercises. Figures from the text and scripts/data for reproducing a breast cancer data analysis are available at www.cancer-systems-biology.net.
Methods of Mathematical Oncology
Author: Takashi Suzuki
Publisher: Springer Nature
ISBN: 9811648662
Category : Mathematics
Languages : en
Pages : 308
Book Description
This book presents original papers reflecting topics featured at the international symposium entitled “Fusion of Mathematics and Biology” and organized by the editor of the book. The symposium, held in October 2020 at Osaka University in Japan, was the core event for the final year of the research project entitled “Establishing International Research Networks of Mathematical Oncology.” The project had been carried out since April 2015 as part of the Core-to-Core Program of Japan Society for the Promotion of Science (JSPS). In this book, the editor presents collaborative research from prestigious organizations in France, the UK, and the USA. By utilizing their individual strengths and realizing the fusion of life science and mathematical science, the project achieved a combination of mathematical analysis, verification by biomedical experiments, and statistical analysis of chemical databases. Mathematics is sometimes regarded as a universal language. It is a valuable property that everyone can understand beyond the boundaries of culture, religion, and language. This unifying force of mathematics also applies to the various fields of science. Mathematical oncology has two aspects, i.e., data science and mathematical modeling, and definitely helps in the prediction and control of biological phenomena observed in cancer evolution. The topics addressed in this book represent several methods of applying mathematical modeling to scientific problems in the natural sciences. Furthermore, novel reviews are included that may motivate many mathematicians to become interested in biological research.
Publisher: Springer Nature
ISBN: 9811648662
Category : Mathematics
Languages : en
Pages : 308
Book Description
This book presents original papers reflecting topics featured at the international symposium entitled “Fusion of Mathematics and Biology” and organized by the editor of the book. The symposium, held in October 2020 at Osaka University in Japan, was the core event for the final year of the research project entitled “Establishing International Research Networks of Mathematical Oncology.” The project had been carried out since April 2015 as part of the Core-to-Core Program of Japan Society for the Promotion of Science (JSPS). In this book, the editor presents collaborative research from prestigious organizations in France, the UK, and the USA. By utilizing their individual strengths and realizing the fusion of life science and mathematical science, the project achieved a combination of mathematical analysis, verification by biomedical experiments, and statistical analysis of chemical databases. Mathematics is sometimes regarded as a universal language. It is a valuable property that everyone can understand beyond the boundaries of culture, religion, and language. This unifying force of mathematics also applies to the various fields of science. Mathematical oncology has two aspects, i.e., data science and mathematical modeling, and definitely helps in the prediction and control of biological phenomena observed in cancer evolution. The topics addressed in this book represent several methods of applying mathematical modeling to scientific problems in the natural sciences. Furthermore, novel reviews are included that may motivate many mathematicians to become interested in biological research.
Oncolytic Viruses
Author: Christine E. Engeland
Publisher: Humana
ISBN: 9781493997961
Category : Medical
Languages : en
Pages : 329
Book Description
This book aims to provide a guide for virologists, translational researchers, and clinicians in the field of cancer research by providing reference protocols and methodologies from vector development through clinical translation. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Oncolytic Viruses: Methods and Protocols aims to ensure successful results in the further study of this vital field.
Publisher: Humana
ISBN: 9781493997961
Category : Medical
Languages : en
Pages : 329
Book Description
This book aims to provide a guide for virologists, translational researchers, and clinicians in the field of cancer research by providing reference protocols and methodologies from vector development through clinical translation. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Oncolytic Viruses: Methods and Protocols aims to ensure successful results in the further study of this vital field.
Selected Topics in Cancer Modeling
Author: Nicola Bellomo
Publisher: Springer Science & Business Media
ISBN: 0817647139
Category : Mathematics
Languages : en
Pages : 481
Book Description
This collection of selected chapters offers a comprehensive overview of state-of-the-art mathematical methods and tools for modeling and analyzing cancer phenomena. Topics covered include stochastic evolutionary models of cancer initiation and progression, tumor cords and their response to anticancer agents, and immune competition in tumor progression and prevention. The complexity of modeling living matter requires the development of new mathematical methods and ideas. This volume, written by first-rate researchers in the field of mathematical biology, is one of the first steps in that direction.
Publisher: Springer Science & Business Media
ISBN: 0817647139
Category : Mathematics
Languages : en
Pages : 481
Book Description
This collection of selected chapters offers a comprehensive overview of state-of-the-art mathematical methods and tools for modeling and analyzing cancer phenomena. Topics covered include stochastic evolutionary models of cancer initiation and progression, tumor cords and their response to anticancer agents, and immune competition in tumor progression and prevention. The complexity of modeling living matter requires the development of new mathematical methods and ideas. This volume, written by first-rate researchers in the field of mathematical biology, is one of the first steps in that direction.
Computational Systems Biology Approaches in Cancer Research
Author: Inna Kuperstein
Publisher: CRC Press
ISBN: 1000682927
Category : Computers
Languages : en
Pages : 119
Book Description
Praise for Computational Systems BiologyApproaches in Cancer Research: "Complex concepts are written clearly and with informative illustrations and useful links. The book is enjoyable to read yet provides sufficient depth to serve as a valuable resource for both students and faculty." — Trey Ideker, Professor of Medicine, UC Xan Diego, School of Medicine "This volume is attractive because it addresses important and timely topics for research and teaching on computational methods in cancer research. It covers a broad variety of approaches, exposes recent innovations in computational methods, and provides acces to source code and to dedicated interactive web sites." — Yves Moreau, Department of Electrical Engineering, SysBioSys Centre for Computational Systems Biology, University of Leuven With the availability of massive amounts of data in biology, the need for advanced computational tools and techniques is becoming increasingly important and key in understanding biology in disease and healthy states. This book focuses on computational systems biology approaches, with a particular lens on tackling one of the most challenging diseases - cancer. The book provides an important reference and teaching material in the field of computational biology in general and cancer systems biology in particular. The book presents a list of modern approaches in systems biology with application to cancer research and beyond. It is structured in a didactic form such that the idea of each approach can easily be grasped from the short text and self-explanatory figures. The coverage of topics is diverse: from pathway resources, through methods for data analysis and single data analysis to drug response predictors, classifiers and image analysis using machine learning and artificial intelligence approaches. Features Up to date using a wide range of approaches Applicationexample in each chapter Online resources with useful applications’
Publisher: CRC Press
ISBN: 1000682927
Category : Computers
Languages : en
Pages : 119
Book Description
Praise for Computational Systems BiologyApproaches in Cancer Research: "Complex concepts are written clearly and with informative illustrations and useful links. The book is enjoyable to read yet provides sufficient depth to serve as a valuable resource for both students and faculty." — Trey Ideker, Professor of Medicine, UC Xan Diego, School of Medicine "This volume is attractive because it addresses important and timely topics for research and teaching on computational methods in cancer research. It covers a broad variety of approaches, exposes recent innovations in computational methods, and provides acces to source code and to dedicated interactive web sites." — Yves Moreau, Department of Electrical Engineering, SysBioSys Centre for Computational Systems Biology, University of Leuven With the availability of massive amounts of data in biology, the need for advanced computational tools and techniques is becoming increasingly important and key in understanding biology in disease and healthy states. This book focuses on computational systems biology approaches, with a particular lens on tackling one of the most challenging diseases - cancer. The book provides an important reference and teaching material in the field of computational biology in general and cancer systems biology in particular. The book presents a list of modern approaches in systems biology with application to cancer research and beyond. It is structured in a didactic form such that the idea of each approach can easily be grasped from the short text and self-explanatory figures. The coverage of topics is diverse: from pathway resources, through methods for data analysis and single data analysis to drug response predictors, classifiers and image analysis using machine learning and artificial intelligence approaches. Features Up to date using a wide range of approaches Applicationexample in each chapter Online resources with useful applications’
Innovations for Next-Generation Antibody-Drug Conjugates
Author: Marc Damelin
Publisher: Springer
ISBN: 3319781545
Category : Medical
Languages : en
Pages : 358
Book Description
Antibody-drug conjugates (ADCs) stand at the verge of a transformation. Scores of clinical programs have yielded only a few regulatory approvals, but a wave of technological innovation now empowers us to overcome past technical challenges. This volume focuses on the next generation of ADCs and the innovations that will enable them. The book inspires the future by integrating the field’s history with novel strategies and cutting-edge technologies. While the book primarily addresses ADCs for solid tumors, the last chapter explores the emerging interest in using ADCs to treat other diseases. The therapeutic rationale of ADCs is strong: to direct small molecules to the desired site of action (and away from normal tissues) by conjugation to antibodies or other targeting moieties. However, the combination of small and large molecules imposes deep complexity to lead optimization, pharmacokinetics, toxicology, analytics and manufacturing. The field has made significant advances in all of these areas by improving target selection, ADC design, manufacturing methods and clinical strategies. These innovations will inspire and educate scientists who are designing next-generation ADCs with the potential to transform the lives of patients.
Publisher: Springer
ISBN: 3319781545
Category : Medical
Languages : en
Pages : 358
Book Description
Antibody-drug conjugates (ADCs) stand at the verge of a transformation. Scores of clinical programs have yielded only a few regulatory approvals, but a wave of technological innovation now empowers us to overcome past technical challenges. This volume focuses on the next generation of ADCs and the innovations that will enable them. The book inspires the future by integrating the field’s history with novel strategies and cutting-edge technologies. While the book primarily addresses ADCs for solid tumors, the last chapter explores the emerging interest in using ADCs to treat other diseases. The therapeutic rationale of ADCs is strong: to direct small molecules to the desired site of action (and away from normal tissues) by conjugation to antibodies or other targeting moieties. However, the combination of small and large molecules imposes deep complexity to lead optimization, pharmacokinetics, toxicology, analytics and manufacturing. The field has made significant advances in all of these areas by improving target selection, ADC design, manufacturing methods and clinical strategies. These innovations will inspire and educate scientists who are designing next-generation ADCs with the potential to transform the lives of patients.
Introduction to Mathematical Oncology
Author: Yang Kuang
Publisher: CRC Press
ISBN: 1584889918
Category : Mathematics
Languages : en
Pages : 469
Book Description
Introduction to Mathematical Oncology presents biologically well-motivated and mathematically tractable models that facilitate both a deep understanding of cancer biology and better cancer treatment designs. It covers the medical and biological background of the diseases, modeling issues, and existing methods and their limitations. The authors introduce mathematical and programming tools, along with analytical and numerical studies of the models. They also develop new mathematical tools and look to future improvements on dynamical models. After introducing the general theory of medicine and exploring how mathematics can be essential in its understanding, the text describes well-known, practical, and insightful mathematical models of avascular tumor growth and mathematically tractable treatment models based on ordinary differential equations. It continues the topic of avascular tumor growth in the context of partial differential equation models by incorporating the spatial structure and physiological structure, such as cell size. The book then focuses on the recent active multi-scale modeling efforts on prostate cancer growth and treatment dynamics. It also examines more mechanistically formulated models, including cell quota-based population growth models, with applications to real tumors and validation using clinical data. The remainder of the text presents abundant additional historical, biological, and medical background materials for advanced and specific treatment modeling efforts. Extensively classroom-tested in undergraduate and graduate courses, this self-contained book allows instructors to emphasize specific topics relevant to clinical cancer biology and treatment. It can be used in a variety of ways, including a single-semester undergraduate course, a more ambitious graduate course, or a full-year sequence on mathematical oncology.
Publisher: CRC Press
ISBN: 1584889918
Category : Mathematics
Languages : en
Pages : 469
Book Description
Introduction to Mathematical Oncology presents biologically well-motivated and mathematically tractable models that facilitate both a deep understanding of cancer biology and better cancer treatment designs. It covers the medical and biological background of the diseases, modeling issues, and existing methods and their limitations. The authors introduce mathematical and programming tools, along with analytical and numerical studies of the models. They also develop new mathematical tools and look to future improvements on dynamical models. After introducing the general theory of medicine and exploring how mathematics can be essential in its understanding, the text describes well-known, practical, and insightful mathematical models of avascular tumor growth and mathematically tractable treatment models based on ordinary differential equations. It continues the topic of avascular tumor growth in the context of partial differential equation models by incorporating the spatial structure and physiological structure, such as cell size. The book then focuses on the recent active multi-scale modeling efforts on prostate cancer growth and treatment dynamics. It also examines more mechanistically formulated models, including cell quota-based population growth models, with applications to real tumors and validation using clinical data. The remainder of the text presents abundant additional historical, biological, and medical background materials for advanced and specific treatment modeling efforts. Extensively classroom-tested in undergraduate and graduate courses, this self-contained book allows instructors to emphasize specific topics relevant to clinical cancer biology and treatment. It can be used in a variety of ways, including a single-semester undergraduate course, a more ambitious graduate course, or a full-year sequence on mathematical oncology.