Author: Harald Cramér
Publisher:
ISBN:
Category : Mathematical statistics
Languages : en
Pages : 575
Book Description
Mathematical Methods of Statistics
Author: Harald Cramér
Publisher:
ISBN:
Category : Mathematical statistics
Languages : en
Pages : 575
Book Description
Publisher:
ISBN:
Category : Mathematical statistics
Languages : en
Pages : 575
Book Description
Mathematical Methods in Statistics
Author: David Freedman
Publisher: W W Norton & Company Incorporated
ISBN: 9780393952230
Category : Mathematical statistics
Languages : en
Pages : 0
Book Description
Publisher: W W Norton & Company Incorporated
ISBN: 9780393952230
Category : Mathematical statistics
Languages : en
Pages : 0
Book Description
Mathematical Statistics with Resampling and R
Author: Laura M. Chihara
Publisher: John Wiley & Sons
ISBN: 1119416523
Category : Mathematics
Languages : en
Pages : 557
Book Description
This thoroughly updated second edition combines the latest software applications with the benefits of modern resampling techniques Resampling helps students understand the meaning of sampling distributions, sampling variability, P-values, hypothesis tests, and confidence intervals. The second edition of Mathematical Statistics with Resampling and R combines modern resampling techniques and mathematical statistics. This book has been classroom-tested to ensure an accessible presentation, uses the powerful and flexible computer language R for data analysis and explores the benefits of modern resampling techniques. This book offers an introduction to permutation tests and bootstrap methods that can serve to motivate classical inference methods. The book strikes a balance between theory, computing, and applications, and the new edition explores additional topics including consulting, paired t test, ANOVA and Google Interview Questions. Throughout the book, new and updated case studies are included representing a diverse range of subjects such as flight delays, birth weights of babies, and telephone company repair times. These illustrate the relevance of the real-world applications of the material. This new edition: • Puts the focus on statistical consulting that emphasizes giving a client an understanding of data and goes beyond typical expectations • Presents new material on topics such as the paired t test, Fisher's Exact Test and the EM algorithm • Offers a new section on "Google Interview Questions" that illustrates statistical thinking • Provides a new chapter on ANOVA • Contains more exercises and updated case studies, data sets, and R code Written for undergraduate students in a mathematical statistics course as well as practitioners and researchers, the second edition of Mathematical Statistics with Resampling and R presents a revised and updated guide for applying the most current resampling techniques to mathematical statistics.
Publisher: John Wiley & Sons
ISBN: 1119416523
Category : Mathematics
Languages : en
Pages : 557
Book Description
This thoroughly updated second edition combines the latest software applications with the benefits of modern resampling techniques Resampling helps students understand the meaning of sampling distributions, sampling variability, P-values, hypothesis tests, and confidence intervals. The second edition of Mathematical Statistics with Resampling and R combines modern resampling techniques and mathematical statistics. This book has been classroom-tested to ensure an accessible presentation, uses the powerful and flexible computer language R for data analysis and explores the benefits of modern resampling techniques. This book offers an introduction to permutation tests and bootstrap methods that can serve to motivate classical inference methods. The book strikes a balance between theory, computing, and applications, and the new edition explores additional topics including consulting, paired t test, ANOVA and Google Interview Questions. Throughout the book, new and updated case studies are included representing a diverse range of subjects such as flight delays, birth weights of babies, and telephone company repair times. These illustrate the relevance of the real-world applications of the material. This new edition: • Puts the focus on statistical consulting that emphasizes giving a client an understanding of data and goes beyond typical expectations • Presents new material on topics such as the paired t test, Fisher's Exact Test and the EM algorithm • Offers a new section on "Google Interview Questions" that illustrates statistical thinking • Provides a new chapter on ANOVA • Contains more exercises and updated case studies, data sets, and R code Written for undergraduate students in a mathematical statistics course as well as practitioners and researchers, the second edition of Mathematical Statistics with Resampling and R presents a revised and updated guide for applying the most current resampling techniques to mathematical statistics.
Mathematical Statistics
Author: Dieter Rasch
Publisher: John Wiley & Sons
ISBN: 1119385288
Category : Mathematics
Languages : en
Pages : 686
Book Description
Explores mathematical statistics in its entirety—from the fundamentals to modern methods This book introduces readers to point estimation, confidence intervals, and statistical tests. Based on the general theory of linear models, it provides an in-depth overview of the following: analysis of variance (ANOVA) for models with fixed, random, and mixed effects; regression analysis is also first presented for linear models with fixed, random, and mixed effects before being expanded to nonlinear models; statistical multi-decision problems like statistical selection procedures (Bechhofer and Gupta) and sequential tests; and design of experiments from a mathematical-statistical point of view. Most analysis methods have been supplemented by formulae for minimal sample sizes. The chapters also contain exercises with hints for solutions. Translated from the successful German text, Mathematical Statistics requires knowledge of probability theory (combinatorics, probability distributions, functions and sequences of random variables), which is typically taught in the earlier semesters of scientific and mathematical study courses. It teaches readers all about statistical analysis and covers the design of experiments. The book also describes optimal allocation in the chapters on regression analysis. Additionally, it features a chapter devoted solely to experimental designs. Classroom-tested with exercises included Practice-oriented (taken from day-to-day statistical work of the authors) Includes further studies including design of experiments and sample sizing Presents and uses IBM SPSS Statistics 24 for practical calculations of data Mathematical Statistics is a recommended text for advanced students and practitioners of math, probability, and statistics.
Publisher: John Wiley & Sons
ISBN: 1119385288
Category : Mathematics
Languages : en
Pages : 686
Book Description
Explores mathematical statistics in its entirety—from the fundamentals to modern methods This book introduces readers to point estimation, confidence intervals, and statistical tests. Based on the general theory of linear models, it provides an in-depth overview of the following: analysis of variance (ANOVA) for models with fixed, random, and mixed effects; regression analysis is also first presented for linear models with fixed, random, and mixed effects before being expanded to nonlinear models; statistical multi-decision problems like statistical selection procedures (Bechhofer and Gupta) and sequential tests; and design of experiments from a mathematical-statistical point of view. Most analysis methods have been supplemented by formulae for minimal sample sizes. The chapters also contain exercises with hints for solutions. Translated from the successful German text, Mathematical Statistics requires knowledge of probability theory (combinatorics, probability distributions, functions and sequences of random variables), which is typically taught in the earlier semesters of scientific and mathematical study courses. It teaches readers all about statistical analysis and covers the design of experiments. The book also describes optimal allocation in the chapters on regression analysis. Additionally, it features a chapter devoted solely to experimental designs. Classroom-tested with exercises included Practice-oriented (taken from day-to-day statistical work of the authors) Includes further studies including design of experiments and sample sizing Presents and uses IBM SPSS Statistics 24 for practical calculations of data Mathematical Statistics is a recommended text for advanced students and practitioners of math, probability, and statistics.
Statistics for Mathematicians
Author: Victor M. Panaretos
Publisher: Birkhäuser
ISBN: 3319283413
Category : Mathematics
Languages : en
Pages : 190
Book Description
This textbook provides a coherent introduction to the main concepts and methods of one-parameter statistical inference. Intended for students of Mathematics taking their first course in Statistics, the focus is on Statistics for Mathematicians rather than on Mathematical Statistics. The goal is not to focus on the mathematical/theoretical aspects of the subject, but rather to provide an introduction to the subject tailored to the mindset and tastes of Mathematics students, who are sometimes turned off by the informal nature of Statistics courses. This book can be used as the basis for an elementary semester-long first course on Statistics with a firm sense of direction that does not sacrifice rigor. The deeper goal of the text is to attract the attention of promising Mathematics students.
Publisher: Birkhäuser
ISBN: 3319283413
Category : Mathematics
Languages : en
Pages : 190
Book Description
This textbook provides a coherent introduction to the main concepts and methods of one-parameter statistical inference. Intended for students of Mathematics taking their first course in Statistics, the focus is on Statistics for Mathematicians rather than on Mathematical Statistics. The goal is not to focus on the mathematical/theoretical aspects of the subject, but rather to provide an introduction to the subject tailored to the mindset and tastes of Mathematics students, who are sometimes turned off by the informal nature of Statistics courses. This book can be used as the basis for an elementary semester-long first course on Statistics with a firm sense of direction that does not sacrifice rigor. The deeper goal of the text is to attract the attention of promising Mathematics students.
Methods of Mathematics Applied to Calculus, Probability, and Statistics
Author: Richard W. Hamming
Publisher: Courier Corporation
ISBN: 0486138879
Category : Mathematics
Languages : en
Pages : 882
Book Description
This 4-part treatment begins with algebra and analytic geometry and proceeds to an exploration of the calculus of algebraic functions and transcendental functions and applications. 1985 edition. Includes 310 figures and 18 tables.
Publisher: Courier Corporation
ISBN: 0486138879
Category : Mathematics
Languages : en
Pages : 882
Book Description
This 4-part treatment begins with algebra and analytic geometry and proceeds to an exploration of the calculus of algebraic functions and transcendental functions and applications. 1985 edition. Includes 310 figures and 18 tables.
Financial Statistics and Mathematical Finance
Author: Ansgar Steland
Publisher: John Wiley & Sons
ISBN: 1118316568
Category : Business & Economics
Languages : en
Pages : 355
Book Description
Mathematical finance has grown into a huge area of research which requires a lot of care and a large number of sophisticated mathematical tools. Mathematically rigorous and yet accessible to advanced level practitioners and mathematicians alike, it considers various aspects of the application of statistical methods in finance and illustrates some of the many ways that statistical tools are used in financial applications. Financial Statistics and Mathematical Finance: Provides an introduction to the basics of financial statistics and mathematical finance. Explains the use and importance of statistical methods in econometrics and financial engineering. Illustrates the importance of derivatives and calculus to aid understanding in methods and results. Looks at advanced topics such as martingale theory, stochastic processes and stochastic integration. Features examples throughout to illustrate applications in mathematical and statistical finance. Is supported by an accompanying website featuring R code and data sets. Financial Statistics and Mathematical Finance introduces the financial methodology and the relevant mathematical tools in a style that is both mathematically rigorous and yet accessible to advanced level practitioners and mathematicians alike, both graduate students and researchers in statistics, finance, econometrics and business administration will benefit from this book.
Publisher: John Wiley & Sons
ISBN: 1118316568
Category : Business & Economics
Languages : en
Pages : 355
Book Description
Mathematical finance has grown into a huge area of research which requires a lot of care and a large number of sophisticated mathematical tools. Mathematically rigorous and yet accessible to advanced level practitioners and mathematicians alike, it considers various aspects of the application of statistical methods in finance and illustrates some of the many ways that statistical tools are used in financial applications. Financial Statistics and Mathematical Finance: Provides an introduction to the basics of financial statistics and mathematical finance. Explains the use and importance of statistical methods in econometrics and financial engineering. Illustrates the importance of derivatives and calculus to aid understanding in methods and results. Looks at advanced topics such as martingale theory, stochastic processes and stochastic integration. Features examples throughout to illustrate applications in mathematical and statistical finance. Is supported by an accompanying website featuring R code and data sets. Financial Statistics and Mathematical Finance introduces the financial methodology and the relevant mathematical tools in a style that is both mathematically rigorous and yet accessible to advanced level practitioners and mathematicians alike, both graduate students and researchers in statistics, finance, econometrics and business administration will benefit from this book.
Mathematical Statistics
Author: George R. Terrell
Publisher: Springer Science & Business Media
ISBN: 0387227695
Category : Mathematics
Languages : en
Pages : 467
Book Description
This textbook introduces the mathematical concepts and methods that underlie statistics. The course is unified, in the sense that no prior knowledge of probability theory is assumed, being developed as needed. The book is committed to both a high level of mathematical seriousness and to an intimate connection with application. In its teaching style, the book is * mathematically complete * concrete * constructive * active. The text is aimed at the upper undergraduate or the beginning Masters program level. It assumes the usual two-year college mathematics sequence, including an introduction to multiple integrals, matrix algebra, and infinite series.
Publisher: Springer Science & Business Media
ISBN: 0387227695
Category : Mathematics
Languages : en
Pages : 467
Book Description
This textbook introduces the mathematical concepts and methods that underlie statistics. The course is unified, in the sense that no prior knowledge of probability theory is assumed, being developed as needed. The book is committed to both a high level of mathematical seriousness and to an intimate connection with application. In its teaching style, the book is * mathematically complete * concrete * constructive * active. The text is aimed at the upper undergraduate or the beginning Masters program level. It assumes the usual two-year college mathematics sequence, including an introduction to multiple integrals, matrix algebra, and infinite series.
Modern Mathematical Statistics with Applications
Author: Jay L. Devore
Publisher: Springer Nature
ISBN: 3030551563
Category : Mathematics
Languages : en
Pages : 981
Book Description
This 3rd edition of Modern Mathematical Statistics with Applications tries to strike a balance between mathematical foundations and statistical practice. The book provides a clear and current exposition of statistical concepts and methodology, including many examples and exercises based on real data gleaned from publicly available sources. Here is a small but representative selection of scenarios for our examples and exercises based on information in recent articles: Use of the “Big Mac index” by the publication The Economist as a humorous way to compare product costs across nations Visualizing how the concentration of lead levels in cartridges varies for each of five brands of e-cigarettes Describing the distribution of grip size among surgeons and how it impacts their ability to use a particular brand of surgical stapler Estimating the true average odometer reading of used Porsche Boxsters listed for sale on www.cars.com Comparing head acceleration after impact when wearing a football helmet with acceleration without a helmet Investigating the relationship between body mass index and foot load while running The main focus of the book is on presenting and illustrating methods of inferential statistics used by investigators in a wide variety of disciplines, from actuarial science all the way to zoology. It begins with a chapter on descriptive statistics that immediately exposes the reader to the analysis of real data. The next six chapters develop the probability material that facilitates the transition from simply describing data to drawing formal conclusions based on inferential methodology. Point estimation, the use of statistical intervals, and hypothesis testing are the topics of the first three inferential chapters. The remainder of the book explores the use of these methods in a variety of more complex settings. This edition includes many new examples and exercises as well as an introduction to the simulation of events and probability distributions. There are more than 1300 exercises in the book, ranging from very straightforward to reasonably challenging. Many sections have been rewritten with the goal of streamlining and providing a more accessible exposition. Output from the most common statistical software packages is included wherever appropriate (a feature absent from virtually all other mathematical statistics textbooks). The authors hope that their enthusiasm for the theory and applicability of statistics to real world problems will encourage students to pursue more training in the discipline.
Publisher: Springer Nature
ISBN: 3030551563
Category : Mathematics
Languages : en
Pages : 981
Book Description
This 3rd edition of Modern Mathematical Statistics with Applications tries to strike a balance between mathematical foundations and statistical practice. The book provides a clear and current exposition of statistical concepts and methodology, including many examples and exercises based on real data gleaned from publicly available sources. Here is a small but representative selection of scenarios for our examples and exercises based on information in recent articles: Use of the “Big Mac index” by the publication The Economist as a humorous way to compare product costs across nations Visualizing how the concentration of lead levels in cartridges varies for each of five brands of e-cigarettes Describing the distribution of grip size among surgeons and how it impacts their ability to use a particular brand of surgical stapler Estimating the true average odometer reading of used Porsche Boxsters listed for sale on www.cars.com Comparing head acceleration after impact when wearing a football helmet with acceleration without a helmet Investigating the relationship between body mass index and foot load while running The main focus of the book is on presenting and illustrating methods of inferential statistics used by investigators in a wide variety of disciplines, from actuarial science all the way to zoology. It begins with a chapter on descriptive statistics that immediately exposes the reader to the analysis of real data. The next six chapters develop the probability material that facilitates the transition from simply describing data to drawing formal conclusions based on inferential methodology. Point estimation, the use of statistical intervals, and hypothesis testing are the topics of the first three inferential chapters. The remainder of the book explores the use of these methods in a variety of more complex settings. This edition includes many new examples and exercises as well as an introduction to the simulation of events and probability distributions. There are more than 1300 exercises in the book, ranging from very straightforward to reasonably challenging. Many sections have been rewritten with the goal of streamlining and providing a more accessible exposition. Output from the most common statistical software packages is included wherever appropriate (a feature absent from virtually all other mathematical statistics textbooks). The authors hope that their enthusiasm for the theory and applicability of statistics to real world problems will encourage students to pursue more training in the discipline.
Mathematical Methods of Reliability Theory
Author: B. V. Gnedenko
Publisher: Academic Press
ISBN: 1483263517
Category : Mathematics
Languages : en
Pages : 519
Book Description
Mathematical Methods of Reliability Theory discusses fundamental concepts of probability theory, mathematical statistics, and an exposition of the relationships among the fundamental quantitative characteristics encountered in the theory. The book deals with the set-theoretic approach to reliability theory and the central concepts of set theory to the phenomena. It also presents methods of finding estimates for reliability parameters based on observations and methods of testing reliability hypotheses. Based on mathematical statistics, the book also explains formulation of some selected results. It presents a method that increases the reliability of manufactured articles—redundancy. An important part of product quality control is the standards of acceptance-sampling plans which require simplicity, wide content for flexibility, comprehensive characteristics, and variability. The book also tackles economical and rational methods of sampling inspections, highlighting the need for a correct evaluation of environmental conditions—the factors which predetermine the choice of the inspection method. The book then explains how to estimate the efficiency of the operation of the sampling plan after its selection. The book can be helpful for engineers, mathematicians, economists, or industrial managers, as well as for other professionals who work in the technological, political, research, structural, and physico-chemical areas.
Publisher: Academic Press
ISBN: 1483263517
Category : Mathematics
Languages : en
Pages : 519
Book Description
Mathematical Methods of Reliability Theory discusses fundamental concepts of probability theory, mathematical statistics, and an exposition of the relationships among the fundamental quantitative characteristics encountered in the theory. The book deals with the set-theoretic approach to reliability theory and the central concepts of set theory to the phenomena. It also presents methods of finding estimates for reliability parameters based on observations and methods of testing reliability hypotheses. Based on mathematical statistics, the book also explains formulation of some selected results. It presents a method that increases the reliability of manufactured articles—redundancy. An important part of product quality control is the standards of acceptance-sampling plans which require simplicity, wide content for flexibility, comprehensive characteristics, and variability. The book also tackles economical and rational methods of sampling inspections, highlighting the need for a correct evaluation of environmental conditions—the factors which predetermine the choice of the inspection method. The book then explains how to estimate the efficiency of the operation of the sampling plan after its selection. The book can be helpful for engineers, mathematicians, economists, or industrial managers, as well as for other professionals who work in the technological, political, research, structural, and physico-chemical areas.