Author: Masud Mansuripur
Publisher: Cognella Academic Publishing
ISBN: 9781516535897
Category :
Languages : en
Pages :
Book Description
Mathematical Methods in Science and Engineering: Applications in Optics and Photonics helps students build a conceptual appreciation for critical mathematical methods, as well as the physical feel and intuition for select mathematical ideas. Throughout the text, examples are provided from the field of optics and photonics to clarify key concepts. The book features 13 targeted chapters that begin with a brief introduction to the topical area and then dive directly into the subject matter. Students learn about properties of numbers, methods of mathematical reasoning, Euclidean geometry, the fundamentals of complex number theory, and techniques to deal with finite as well as infinite sums and products. Dedicated chapters speak to key concepts of multivariate calculus, the properties of analytic functions of a complex variable, Fourier transformation, methods of solving partial differential equations, the Sturm-Liouville theory, and special functions, including Euler's gamma function, Riemann's zeta function, and the Airy and Bessel functions. Elementary matrix algebra, vector calculus, and probability, random variables, and stochastic processes are addressed. Mathematical Methods in Science and Engineering is well suited for graduate-level courses in optical sciences, physics, and engineering.
Mathematical Methods in Science and Engineering (Applications in Optics and Photonics) (First Edition)
Author: Masud Mansuripur
Publisher: Cognella Academic Publishing
ISBN: 9781516535897
Category :
Languages : en
Pages :
Book Description
Mathematical Methods in Science and Engineering: Applications in Optics and Photonics helps students build a conceptual appreciation for critical mathematical methods, as well as the physical feel and intuition for select mathematical ideas. Throughout the text, examples are provided from the field of optics and photonics to clarify key concepts. The book features 13 targeted chapters that begin with a brief introduction to the topical area and then dive directly into the subject matter. Students learn about properties of numbers, methods of mathematical reasoning, Euclidean geometry, the fundamentals of complex number theory, and techniques to deal with finite as well as infinite sums and products. Dedicated chapters speak to key concepts of multivariate calculus, the properties of analytic functions of a complex variable, Fourier transformation, methods of solving partial differential equations, the Sturm-Liouville theory, and special functions, including Euler's gamma function, Riemann's zeta function, and the Airy and Bessel functions. Elementary matrix algebra, vector calculus, and probability, random variables, and stochastic processes are addressed. Mathematical Methods in Science and Engineering is well suited for graduate-level courses in optical sciences, physics, and engineering.
Publisher: Cognella Academic Publishing
ISBN: 9781516535897
Category :
Languages : en
Pages :
Book Description
Mathematical Methods in Science and Engineering: Applications in Optics and Photonics helps students build a conceptual appreciation for critical mathematical methods, as well as the physical feel and intuition for select mathematical ideas. Throughout the text, examples are provided from the field of optics and photonics to clarify key concepts. The book features 13 targeted chapters that begin with a brief introduction to the topical area and then dive directly into the subject matter. Students learn about properties of numbers, methods of mathematical reasoning, Euclidean geometry, the fundamentals of complex number theory, and techniques to deal with finite as well as infinite sums and products. Dedicated chapters speak to key concepts of multivariate calculus, the properties of analytic functions of a complex variable, Fourier transformation, methods of solving partial differential equations, the Sturm-Liouville theory, and special functions, including Euler's gamma function, Riemann's zeta function, and the Airy and Bessel functions. Elementary matrix algebra, vector calculus, and probability, random variables, and stochastic processes are addressed. Mathematical Methods in Science and Engineering is well suited for graduate-level courses in optical sciences, physics, and engineering.
Mathematical Methods for Optical Physics and Engineering
Author: Gregory J. Gbur
Publisher: Cambridge University Press
ISBN: 1139492691
Category : Science
Languages : en
Pages : 819
Book Description
The first textbook on mathematical methods focusing on techniques for optical science and engineering, this text is ideal for upper division undergraduate and graduate students in optical physics. Containing detailed sections on the basic theory, the textbook places strong emphasis on connecting the abstract mathematical concepts to the optical systems to which they are applied. It covers many topics which usually only appear in more specialized books, such as Zernike polynomials, wavelet and fractional Fourier transforms, vector spherical harmonics, the z-transform, and the angular spectrum representation. Most chapters end by showing how the techniques covered can be used to solve an optical problem. Essay problems based on research publications and numerous exercises help to further strengthen the connection between the theory and its applications.
Publisher: Cambridge University Press
ISBN: 1139492691
Category : Science
Languages : en
Pages : 819
Book Description
The first textbook on mathematical methods focusing on techniques for optical science and engineering, this text is ideal for upper division undergraduate and graduate students in optical physics. Containing detailed sections on the basic theory, the textbook places strong emphasis on connecting the abstract mathematical concepts to the optical systems to which they are applied. It covers many topics which usually only appear in more specialized books, such as Zernike polynomials, wavelet and fractional Fourier transforms, vector spherical harmonics, the z-transform, and the angular spectrum representation. Most chapters end by showing how the techniques covered can be used to solve an optical problem. Essay problems based on research publications and numerous exercises help to further strengthen the connection between the theory and its applications.
Mathematical and Computational Methods in Photonics and Phononics
Author: Habib Ammari
Publisher: American Mathematical Soc.
ISBN: 1470448009
Category : Mathematics
Languages : en
Pages : 522
Book Description
The fields of photonics and phononics encompass the fundamental science of light and sound propagation and interactions in complex structures, as well as its technological applications. This book reviews new and fundamental mathematical tools, computational approaches, and inversion and optimal design methods to address challenging problems in photonics and phononics. An emphasis is placed on analyzing sub-wavelength resonators, super-focusing and super-resolution of electromagnetic and acoustic waves, photonic and phononic crystals, electromagnetic cloaking, and electromagnetic and elastic metamaterials and metasurfaces. Throughout this book, the authors demonstrate the power of layer potential techniques for solving challenging problems in photonics and phononics when they are combined with asymptotic analysis. This book might be of interest to researchers and graduate students working in the fields of applied and computational mathematics, partial differential equations, electromagnetic theory, elasticity, integral equations, and inverse and optimal design problems in photonics and phononics.
Publisher: American Mathematical Soc.
ISBN: 1470448009
Category : Mathematics
Languages : en
Pages : 522
Book Description
The fields of photonics and phononics encompass the fundamental science of light and sound propagation and interactions in complex structures, as well as its technological applications. This book reviews new and fundamental mathematical tools, computational approaches, and inversion and optimal design methods to address challenging problems in photonics and phononics. An emphasis is placed on analyzing sub-wavelength resonators, super-focusing and super-resolution of electromagnetic and acoustic waves, photonic and phononic crystals, electromagnetic cloaking, and electromagnetic and elastic metamaterials and metasurfaces. Throughout this book, the authors demonstrate the power of layer potential techniques for solving challenging problems in photonics and phononics when they are combined with asymptotic analysis. This book might be of interest to researchers and graduate students working in the fields of applied and computational mathematics, partial differential equations, electromagnetic theory, elasticity, integral equations, and inverse and optimal design problems in photonics and phononics.
Engineering Optics
Author: Keigo Iizuka
Publisher: Springer
ISBN: 3540368086
Category : Science
Languages : en
Pages : 500
Book Description
The first edition of this textbook was published only last year, and now, the publisher has decided to issue a paperback edition. This is intended to make the text more affordable to everyone who would like to broaden their knowledge of modem problems in optics. The aim of this book is to provide a basic understanding of the impor tant features of the various topics treated. A detailed study of all the sub jects comprising the field of engineering optics would fill several volumes. This book could perhaps be likened to a soup: it is easy to swallow, but sooner or later heartier sustenance is needed. It is my hope that this book will stimulate your appetite and prepare you for the banquet that could be yours. I would like to take this opportunity to thank those readers, especially Mr. Branislav Petrovic, who sent me appreciative letters and helpful com ments. These have encouraged me to introduce a few minor changes and improvements in this edition.
Publisher: Springer
ISBN: 3540368086
Category : Science
Languages : en
Pages : 500
Book Description
The first edition of this textbook was published only last year, and now, the publisher has decided to issue a paperback edition. This is intended to make the text more affordable to everyone who would like to broaden their knowledge of modem problems in optics. The aim of this book is to provide a basic understanding of the impor tant features of the various topics treated. A detailed study of all the sub jects comprising the field of engineering optics would fill several volumes. This book could perhaps be likened to a soup: it is easy to swallow, but sooner or later heartier sustenance is needed. It is my hope that this book will stimulate your appetite and prepare you for the banquet that could be yours. I would like to take this opportunity to thank those readers, especially Mr. Branislav Petrovic, who sent me appreciative letters and helpful com ments. These have encouraged me to introduce a few minor changes and improvements in this edition.
Light–Matter Interaction
Author: Olaf Stenzel
Publisher: Springer Nature
ISBN: 3030871444
Category : Science
Languages : en
Pages : 558
Book Description
This book offers a didactic introduction to light–matter interactions at both the classical and semi-classical levels. Pursuing an approach that describes the essential physics behind the functionality of any optical element, it acquaints students with the broad areas of optics and photonics. Its rigorous, bottom-up approach to the subject, using model systems ranging from individual atoms and simple molecules to crystalline and amorphous solids, gradually builds up the reader’s familiarity and confidence with the subject matter. Throughout the book, the detailed mathematical treatment and examples of practical applications are accompanied by problems with worked-out solutions. In short, the book provides the most essential information for any graduate or advanced undergraduate student wishing to begin their course of study in the field of photonics, or to brush up on important concepts prior to an examination.
Publisher: Springer Nature
ISBN: 3030871444
Category : Science
Languages : en
Pages : 558
Book Description
This book offers a didactic introduction to light–matter interactions at both the classical and semi-classical levels. Pursuing an approach that describes the essential physics behind the functionality of any optical element, it acquaints students with the broad areas of optics and photonics. Its rigorous, bottom-up approach to the subject, using model systems ranging from individual atoms and simple molecules to crystalline and amorphous solids, gradually builds up the reader’s familiarity and confidence with the subject matter. Throughout the book, the detailed mathematical treatment and examples of practical applications are accompanied by problems with worked-out solutions. In short, the book provides the most essential information for any graduate or advanced undergraduate student wishing to begin their course of study in the field of photonics, or to brush up on important concepts prior to an examination.
Fourier Optics and Computational Imaging
Author: Kedar Khare
Publisher: John Wiley & Sons
ISBN: 1118900340
Category : Technology & Engineering
Languages : en
Pages : 312
Book Description
This book covers both the mathematics of inverse problems and optical systems design, and includes a review of the mathematical methods and Fourier optics. The first part of the book deals with the mathematical tools in detail with minimal assumption about prior knowledge on the part of the reader. The second part of the book discusses concepts in optics, particularly propagation of optical waves and coherence properties of optical fields that form the basis of the computational models used for image recovery. The third part provides a discussion of specific imaging systems that illustrate the power of the hybrid computational imaging model in enhancing imaging performance. A number of exercises are provided for readers to develop further understanding of computational imaging. While the focus of the book is largely on optical imaging systems, the key concepts are discussed in a fairly general manner so as to provide useful background for understanding the mechanisms of a diverse range of imaging modalities.
Publisher: John Wiley & Sons
ISBN: 1118900340
Category : Technology & Engineering
Languages : en
Pages : 312
Book Description
This book covers both the mathematics of inverse problems and optical systems design, and includes a review of the mathematical methods and Fourier optics. The first part of the book deals with the mathematical tools in detail with minimal assumption about prior knowledge on the part of the reader. The second part of the book discusses concepts in optics, particularly propagation of optical waves and coherence properties of optical fields that form the basis of the computational models used for image recovery. The third part provides a discussion of specific imaging systems that illustrate the power of the hybrid computational imaging model in enhancing imaging performance. A number of exercises are provided for readers to develop further understanding of computational imaging. While the focus of the book is largely on optical imaging systems, the key concepts are discussed in a fairly general manner so as to provide useful background for understanding the mechanisms of a diverse range of imaging modalities.
Ultrashort Laser Pulse Phenomena
Author: Jean-Claude Diels
Publisher: Elsevier
ISBN: 0080466400
Category : Science
Languages : en
Pages : 675
Book Description
Ultrashort Laser Pulse Phenomena, Second Edition serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond ("faster than electronics") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic concepts and how they apply to the design of particular sources (dye lasers, solid state lasers, semiconductor lasers, fiber lasers, and sources based on frequency conversion). - Provides an easy to follow guide through "faster than electronics" probing and detection methods - THE manual on designing and constructing femtosecond systems and experiments - Discusses essential technology for applications in micro-machining, femtochemistry, and medical imaging
Publisher: Elsevier
ISBN: 0080466400
Category : Science
Languages : en
Pages : 675
Book Description
Ultrashort Laser Pulse Phenomena, Second Edition serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond ("faster than electronics") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic concepts and how they apply to the design of particular sources (dye lasers, solid state lasers, semiconductor lasers, fiber lasers, and sources based on frequency conversion). - Provides an easy to follow guide through "faster than electronics" probing and detection methods - THE manual on designing and constructing femtosecond systems and experiments - Discusses essential technology for applications in micro-machining, femtochemistry, and medical imaging
Mathematical Optics
Author: Vasudevan Lakshminarayanan
Publisher: CRC Press
ISBN: 1351832859
Category : Science
Languages : en
Pages : 632
Book Description
Going beyond standard introductory texts, Mathematical Optics: Classical, Quantum, and Computational Methods brings together many new mathematical techniques from optical science and engineering research. Profusely illustrated, the book makes the material accessible to students and newcomers to the field. Divided into six parts, the text presents state-of-the-art mathematical methods and applications in classical optics, quantum optics, and image processing. Part I describes the use of phase space concepts to characterize optical beams and the application of dynamic programming in optical waveguides. Part II explores solutions to paraxial, linear, and nonlinear wave equations. Part III discusses cutting-edge areas in transformation optics (such as invisibility cloaks) and computational plasmonics. Part IV uses Lorentz groups, dihedral group symmetry, Lie algebras, and Liouville space to analyze problems in polarization, ray optics, visual optics, and quantum optics. Part V examines the role of coherence functions in modern laser physics and explains how to apply quantum memory channel models in quantum computers. Part VI introduces super-resolution imaging and differential geometric methods in image processing. As numerical/symbolic computation is an important tool for solving numerous real-life problems in optical science, many chapters include Mathematica® code in their appendices. The software codes and notebooks as well as color versions of the book’s figures are available at www.crcpress.com.
Publisher: CRC Press
ISBN: 1351832859
Category : Science
Languages : en
Pages : 632
Book Description
Going beyond standard introductory texts, Mathematical Optics: Classical, Quantum, and Computational Methods brings together many new mathematical techniques from optical science and engineering research. Profusely illustrated, the book makes the material accessible to students and newcomers to the field. Divided into six parts, the text presents state-of-the-art mathematical methods and applications in classical optics, quantum optics, and image processing. Part I describes the use of phase space concepts to characterize optical beams and the application of dynamic programming in optical waveguides. Part II explores solutions to paraxial, linear, and nonlinear wave equations. Part III discusses cutting-edge areas in transformation optics (such as invisibility cloaks) and computational plasmonics. Part IV uses Lorentz groups, dihedral group symmetry, Lie algebras, and Liouville space to analyze problems in polarization, ray optics, visual optics, and quantum optics. Part V examines the role of coherence functions in modern laser physics and explains how to apply quantum memory channel models in quantum computers. Part VI introduces super-resolution imaging and differential geometric methods in image processing. As numerical/symbolic computation is an important tool for solving numerous real-life problems in optical science, many chapters include Mathematica® code in their appendices. The software codes and notebooks as well as color versions of the book’s figures are available at www.crcpress.com.
Lasers and Electro-optics
Author: Christopher C. Davis
Publisher: Cambridge University Press
ISBN: 1107728975
Category : Science
Languages : en
Pages : 887
Book Description
Covering a broad range of topics in modern optical physics and engineering, this textbook is invaluable for undergraduate students studying laser physics, optoelectronics, photonics, applied optics and optical engineering. This new edition has been re-organized, and now covers many new topics such as the optics of stratified media, quantum well lasers and modulators, free electron lasers, diode-pumped solid state and gas lasers, imaging and non-imaging optical systems, squeezed light, periodic poling in nonlinear media, very short pulse lasers and new applications of lasers. The textbook gives a detailed introduction to the basic physics and engineering of lasers, as well as covering the design and operational principles of a wide range of optical systems and electro-optic devices. It features full details of important derivations and results, and provides many practical examples of the design, construction and performance characteristics of different types of lasers and electro-optic devices.
Publisher: Cambridge University Press
ISBN: 1107728975
Category : Science
Languages : en
Pages : 887
Book Description
Covering a broad range of topics in modern optical physics and engineering, this textbook is invaluable for undergraduate students studying laser physics, optoelectronics, photonics, applied optics and optical engineering. This new edition has been re-organized, and now covers many new topics such as the optics of stratified media, quantum well lasers and modulators, free electron lasers, diode-pumped solid state and gas lasers, imaging and non-imaging optical systems, squeezed light, periodic poling in nonlinear media, very short pulse lasers and new applications of lasers. The textbook gives a detailed introduction to the basic physics and engineering of lasers, as well as covering the design and operational principles of a wide range of optical systems and electro-optic devices. It features full details of important derivations and results, and provides many practical examples of the design, construction and performance characteristics of different types of lasers and electro-optic devices.
Fundamentals of Optical Waveguides
Author: Katsunari Okamoto
Publisher: Elsevier
ISBN: 0080455069
Category : Technology & Engineering
Languages : en
Pages : 578
Book Description
Fundamentals of Optical Waveguides is an essential resource for any researcher, professional or student involved in optics and communications engineering. Any reader interested in designing or actively working with optical devices must have a firm grasp of the principles of lightwave propagation. Katsunari Okamoto has presented this difficult technology clearly and concisely with several illustrations and equations. Optical theory encompassed in this reference includes coupled mode theory, nonlinear optical effects, finite element method, beam propagation method, staircase concatenation method, along with several central theorems and formulas. Since the publication of the well-received first edition of this book, planar lightwave circuits and photonic crystal fibers have fully matured. With this second edition the advances of these fibers along with other improvements on existing optical technologies are completely detailed. This comprehensive volume enables readers to fully analyze, design and simulate optical atmospheres. - Exceptional new chapter on Arrayed-Waveguide Grating (AWG) - In-depth discussion of Photonic Crystal Fibers (PCFs) - Thorough explanation of Multimode Interference Devices (MMI) - Full coverage of polarization Mode Dispersion (PMD)
Publisher: Elsevier
ISBN: 0080455069
Category : Technology & Engineering
Languages : en
Pages : 578
Book Description
Fundamentals of Optical Waveguides is an essential resource for any researcher, professional or student involved in optics and communications engineering. Any reader interested in designing or actively working with optical devices must have a firm grasp of the principles of lightwave propagation. Katsunari Okamoto has presented this difficult technology clearly and concisely with several illustrations and equations. Optical theory encompassed in this reference includes coupled mode theory, nonlinear optical effects, finite element method, beam propagation method, staircase concatenation method, along with several central theorems and formulas. Since the publication of the well-received first edition of this book, planar lightwave circuits and photonic crystal fibers have fully matured. With this second edition the advances of these fibers along with other improvements on existing optical technologies are completely detailed. This comprehensive volume enables readers to fully analyze, design and simulate optical atmospheres. - Exceptional new chapter on Arrayed-Waveguide Grating (AWG) - In-depth discussion of Photonic Crystal Fibers (PCFs) - Thorough explanation of Multimode Interference Devices (MMI) - Full coverage of polarization Mode Dispersion (PMD)