Author: Vladimir V. Kalashnikov
Publisher: Springer Science & Business Media
ISBN: 9780792325680
Category : Mathematics
Languages : en
Pages : 402
Book Description
The material of this book is based on several courses which have been delivered for a long time at the Moscow Institute for Physics and Technology. Some parts have formed the subject of lectures given at various universities throughout the world: Freie Universitat of Berlin, Chalmers University of Technology and the University of Goteborg, University of California at Santa Barbara and others. The subject of the book is the theory of queues. This theory, as a mathematical discipline, begins with the work of A. Erlang, who examined a model of a telephone station and obtained the famous formula for the distribution of the number of busy lines which is named after him. Queueing theory has been applied to the study of numerous models: emergency aid, road traffic, computer systems, etc. Besides, it has lead to several related disciplines such as reliability and inventory theories which deal with similar models. Nevertheless, many parts of the theory of queues were developed as a "pure science" with no practical applications. The aim of this book is to give the reader an insight into the mathematical methods which can be used in queueing theory and to present examples of solving problems with the help of these methods. Of course, the choice of the methods is quite subjective. Thus, many prominent results have not even been mentioned.
Mathematical Methods in Queuing Theory
Author: Vladimir V. Kalashnikov
Publisher: Springer Science & Business Media
ISBN: 9780792325680
Category : Mathematics
Languages : en
Pages : 402
Book Description
The material of this book is based on several courses which have been delivered for a long time at the Moscow Institute for Physics and Technology. Some parts have formed the subject of lectures given at various universities throughout the world: Freie Universitat of Berlin, Chalmers University of Technology and the University of Goteborg, University of California at Santa Barbara and others. The subject of the book is the theory of queues. This theory, as a mathematical discipline, begins with the work of A. Erlang, who examined a model of a telephone station and obtained the famous formula for the distribution of the number of busy lines which is named after him. Queueing theory has been applied to the study of numerous models: emergency aid, road traffic, computer systems, etc. Besides, it has lead to several related disciplines such as reliability and inventory theories which deal with similar models. Nevertheless, many parts of the theory of queues were developed as a "pure science" with no practical applications. The aim of this book is to give the reader an insight into the mathematical methods which can be used in queueing theory and to present examples of solving problems with the help of these methods. Of course, the choice of the methods is quite subjective. Thus, many prominent results have not even been mentioned.
Publisher: Springer Science & Business Media
ISBN: 9780792325680
Category : Mathematics
Languages : en
Pages : 402
Book Description
The material of this book is based on several courses which have been delivered for a long time at the Moscow Institute for Physics and Technology. Some parts have formed the subject of lectures given at various universities throughout the world: Freie Universitat of Berlin, Chalmers University of Technology and the University of Goteborg, University of California at Santa Barbara and others. The subject of the book is the theory of queues. This theory, as a mathematical discipline, begins with the work of A. Erlang, who examined a model of a telephone station and obtained the famous formula for the distribution of the number of busy lines which is named after him. Queueing theory has been applied to the study of numerous models: emergency aid, road traffic, computer systems, etc. Besides, it has lead to several related disciplines such as reliability and inventory theories which deal with similar models. Nevertheless, many parts of the theory of queues were developed as a "pure science" with no practical applications. The aim of this book is to give the reader an insight into the mathematical methods which can be used in queueing theory and to present examples of solving problems with the help of these methods. Of course, the choice of the methods is quite subjective. Thus, many prominent results have not even been mentioned.
Mathematical Methods in Queuing Theory
Author: Vladimir V. Kalashnikov
Publisher: Springer Science & Business Media
ISBN: 9401721971
Category : Mathematics
Languages : en
Pages : 389
Book Description
The material of this book is based on several courses which have been delivered for a long time at the Moscow Institute for Physics and Technology. Some parts have formed the subject of lectures given at various universities throughout the world: Freie Universitat of Berlin, Chalmers University of Technology and the University of Goteborg, University of California at Santa Barbara and others. The subject of the book is the theory of queues. This theory, as a mathematical discipline, begins with the work of A. Erlang, who examined a model of a telephone station and obtained the famous formula for the distribution of the number of busy lines which is named after him. Queueing theory has been applied to the study of numerous models: emergency aid, road traffic, computer systems, etc. Besides, it has lead to several related disciplines such as reliability and inventory theories which deal with similar models. Nevertheless, many parts of the theory of queues were developed as a "pure science" with no practical applications. The aim of this book is to give the reader an insight into the mathematical methods which can be used in queueing theory and to present examples of solving problems with the help of these methods. Of course, the choice of the methods is quite subjective. Thus, many prominent results have not even been mentioned.
Publisher: Springer Science & Business Media
ISBN: 9401721971
Category : Mathematics
Languages : en
Pages : 389
Book Description
The material of this book is based on several courses which have been delivered for a long time at the Moscow Institute for Physics and Technology. Some parts have formed the subject of lectures given at various universities throughout the world: Freie Universitat of Berlin, Chalmers University of Technology and the University of Goteborg, University of California at Santa Barbara and others. The subject of the book is the theory of queues. This theory, as a mathematical discipline, begins with the work of A. Erlang, who examined a model of a telephone station and obtained the famous formula for the distribution of the number of busy lines which is named after him. Queueing theory has been applied to the study of numerous models: emergency aid, road traffic, computer systems, etc. Besides, it has lead to several related disciplines such as reliability and inventory theories which deal with similar models. Nevertheless, many parts of the theory of queues were developed as a "pure science" with no practical applications. The aim of this book is to give the reader an insight into the mathematical methods which can be used in queueing theory and to present examples of solving problems with the help of these methods. Of course, the choice of the methods is quite subjective. Thus, many prominent results have not even been mentioned.
An Introduction to Queueing Theory
Author: L. Breuer
Publisher: Springer Science & Business Media
ISBN: 1402036310
Category : Mathematics
Languages : en
Pages : 274
Book Description
The present textbook contains the recordsof a two–semester course on que- ing theory, including an introduction to matrix–analytic methods. This course comprises four hours oflectures and two hours of exercises per week andhas been taughtattheUniversity of Trier, Germany, for about ten years in - quence. The course is directed to last year undergraduate and?rst year gr- uate students of applied probability and computer science, who have already completed an introduction to probability theory. Its purpose is to present - terial that is close enough to concrete queueing models and their applications, while providing a sound mathematical foundation for the analysis of these. Thus the goal of the present book is two–fold. On the one hand, students who are mainly interested in applications easily feel bored by elaborate mathematical questions in the theory of stochastic processes. The presentation of the mathematical foundations in our courses is chosen to cover only the necessary results, which are needed for a solid foundation of the methods of queueing analysis. Further, students oriented - wards applications expect to have a justi?cation for their mathematical efforts in terms of immediate use in queueing analysis. This is the main reason why we have decided to introduce new mathematical concepts only when they will be used in the immediate sequel. On the other hand, students of applied probability do not want any heur- tic derivations just for the sake of yielding fast results for the model at hand.
Publisher: Springer Science & Business Media
ISBN: 1402036310
Category : Mathematics
Languages : en
Pages : 274
Book Description
The present textbook contains the recordsof a two–semester course on que- ing theory, including an introduction to matrix–analytic methods. This course comprises four hours oflectures and two hours of exercises per week andhas been taughtattheUniversity of Trier, Germany, for about ten years in - quence. The course is directed to last year undergraduate and?rst year gr- uate students of applied probability and computer science, who have already completed an introduction to probability theory. Its purpose is to present - terial that is close enough to concrete queueing models and their applications, while providing a sound mathematical foundation for the analysis of these. Thus the goal of the present book is two–fold. On the one hand, students who are mainly interested in applications easily feel bored by elaborate mathematical questions in the theory of stochastic processes. The presentation of the mathematical foundations in our courses is chosen to cover only the necessary results, which are needed for a solid foundation of the methods of queueing analysis. Further, students oriented - wards applications expect to have a justi?cation for their mathematical efforts in terms of immediate use in queueing analysis. This is the main reason why we have decided to introduce new mathematical concepts only when they will be used in the immediate sequel. On the other hand, students of applied probability do not want any heur- tic derivations just for the sake of yielding fast results for the model at hand.
Mathematical Techniques of Operational Research
Author: L. S. Goddard
Publisher: Elsevier
ISBN: 1483180603
Category : Mathematics
Languages : en
Pages : 241
Book Description
Mathematical Techniques of Operational Research is a seven-chapter text that covers the principles and applications of various mathematical tools and models to for operational research. Chapter I provides the basic mathematical ideas used in later chapters. Chapters II and III deal with linear programming, including the special cases of transportation and assignment, as well as their applications such as the Trim Problem. Chapters IV and V discuss the theory of queues and describe the general stationary properties of the single-channel queue, and of simple queues in series and in parallel. These chapters also examine some transient properties of queues. Chapter VI focuses on machine interference, which is an aspect of queueing theory, while Chapter VII deals with the important and mathematically subject of Stock Control or Inventory Theory. This book is intended primarily to graduate mathematicians, business manages, and industrial leaders.
Publisher: Elsevier
ISBN: 1483180603
Category : Mathematics
Languages : en
Pages : 241
Book Description
Mathematical Techniques of Operational Research is a seven-chapter text that covers the principles and applications of various mathematical tools and models to for operational research. Chapter I provides the basic mathematical ideas used in later chapters. Chapters II and III deal with linear programming, including the special cases of transportation and assignment, as well as their applications such as the Trim Problem. Chapters IV and V discuss the theory of queues and describe the general stationary properties of the single-channel queue, and of simple queues in series and in parallel. These chapters also examine some transient properties of queues. Chapter VI focuses on machine interference, which is an aspect of queueing theory, while Chapter VII deals with the important and mathematically subject of Stock Control or Inventory Theory. This book is intended primarily to graduate mathematicians, business manages, and industrial leaders.
Mathematical Methods in Queueing Theory
Author: A. B. Clarke
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 394
Book Description
On May 10-12, 1973 a Conference on Mathematical Methods in Graph Theory was held at Western Michigan University in Kalamazoo. The theme of this Conference was recent advances in the application of analytic and algebraic methods to the analysis of queues and queueing networks. In addition some discussion was given to statistical analyƯ ses in queues, control problems and graphical methods. A total of 83 individuals from both industry and academic estabƯ lishments participated in the Conference. A list of these particiƯ pants can be found on page 373. A total of 18 papers were presented, with sUbstantial time being devoted to their informal discussion. This volume constitutes the proceedings of the Conference, and includes all papers presented. TABLE OF CONTENTS MARCEL F. NEUTS The Markov Renewal Branching Process " 1 RALPH L. DISNEY and W. PETER CHERRY Some Topics in Queueing Network Theory 23 JULIAN KEILSON Convexity and Complete Monotonicity in Queueing Distributions and Associated Limit Behavior ." " " " " . ." " " " " " 45 G.F. NEWELL Graphical Representation of Queue Evolution for Multiple-Server Systems " ." " " " " " " " " " 63 N.U. PRABHU Wiener-Hopf Techniques in Queueing Theory 81 / IAJOS TAKACS Occupation Time Problems in the Theory of Queues 91 TAPAN P. BAGCHI and J.G.C. TEMPLETON Some Finite waiting Space Bulk Queueing Systems 133 U.
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 394
Book Description
On May 10-12, 1973 a Conference on Mathematical Methods in Graph Theory was held at Western Michigan University in Kalamazoo. The theme of this Conference was recent advances in the application of analytic and algebraic methods to the analysis of queues and queueing networks. In addition some discussion was given to statistical analyƯ ses in queues, control problems and graphical methods. A total of 83 individuals from both industry and academic estabƯ lishments participated in the Conference. A list of these particiƯ pants can be found on page 373. A total of 18 papers were presented, with sUbstantial time being devoted to their informal discussion. This volume constitutes the proceedings of the Conference, and includes all papers presented. TABLE OF CONTENTS MARCEL F. NEUTS The Markov Renewal Branching Process " 1 RALPH L. DISNEY and W. PETER CHERRY Some Topics in Queueing Network Theory 23 JULIAN KEILSON Convexity and Complete Monotonicity in Queueing Distributions and Associated Limit Behavior ." " " " " . ." " " " " " 45 G.F. NEWELL Graphical Representation of Queue Evolution for Multiple-Server Systems " ." " " " " " " " " " 63 N.U. PRABHU Wiener-Hopf Techniques in Queueing Theory 81 / IAJOS TAKACS Occupation Time Problems in the Theory of Queues 91 TAPAN P. BAGCHI and J.G.C. TEMPLETON Some Finite waiting Space Bulk Queueing Systems 133 U.
Elements of Queueing Theory, with Applications
Author: Thomas L. Saaty
Publisher: Dover Publications
ISBN:
Category : Mathematics
Languages : en
Pages : 456
Book Description
Publisher: Dover Publications
ISBN:
Category : Mathematics
Languages : en
Pages : 456
Book Description
Fundamentals of Queuing Systems
Author: Nick T. Thomopoulos
Publisher: Springer Science & Business Media
ISBN: 146143713X
Category : Business & Economics
Languages : en
Pages : 187
Book Description
Waiting in lines is a staple of everyday human life. Without really noticing, we are doing it when we go to buy a ticket at a movie theater, stop at a bank to make an account withdrawal, or proceed to checkout a purchase from one of our favorite department stores. Oftentimes, waiting lines are due to overcrowded, overfilling, or congestion; any time there is more customer demand for a service than can be provided, a waiting line forms. Queuing systems is a term used to describe the methods and techniques most ideal for measuring the probability and statistics of a wide variety of waiting line models. This book provides an introduction to basic queuing systems, such as M/M/1 and its variants, as well as newer concepts like systems with priorities, networks of queues, and general service policies. Numerical examples are presented to guide readers into thinking about practical real-world applications, and students and researchers will be able to apply the methods learned to designing queuing systems that extend beyond the classroom. Very little has been published in the area of queuing systems, and this volume will appeal to graduate-level students, researchers, and practitioners in the areas of management science, applied mathematics, engineering, computer science, and statistics.
Publisher: Springer Science & Business Media
ISBN: 146143713X
Category : Business & Economics
Languages : en
Pages : 187
Book Description
Waiting in lines is a staple of everyday human life. Without really noticing, we are doing it when we go to buy a ticket at a movie theater, stop at a bank to make an account withdrawal, or proceed to checkout a purchase from one of our favorite department stores. Oftentimes, waiting lines are due to overcrowded, overfilling, or congestion; any time there is more customer demand for a service than can be provided, a waiting line forms. Queuing systems is a term used to describe the methods and techniques most ideal for measuring the probability and statistics of a wide variety of waiting line models. This book provides an introduction to basic queuing systems, such as M/M/1 and its variants, as well as newer concepts like systems with priorities, networks of queues, and general service policies. Numerical examples are presented to guide readers into thinking about practical real-world applications, and students and researchers will be able to apply the methods learned to designing queuing systems that extend beyond the classroom. Very little has been published in the area of queuing systems, and this volume will appeal to graduate-level students, researchers, and practitioners in the areas of management science, applied mathematics, engineering, computer science, and statistics.
Mathematical Methods in Queuing Theory
Author: Vladimir V. Kalashnikov
Publisher: Springer
ISBN: 9789401721981
Category : Mathematics
Languages : en
Pages : 382
Book Description
The material of this book is based on several courses which have been delivered for a long time at the Moscow Institute for Physics and Technology. Some parts have formed the subject of lectures given at various universities throughout the world: Freie Universitat of Berlin, Chalmers University of Technology and the University of Goteborg, University of California at Santa Barbara and others. The subject of the book is the theory of queues. This theory, as a mathematical discipline, begins with the work of A. Erlang, who examined a model of a telephone station and obtained the famous formula for the distribution of the number of busy lines which is named after him. Queueing theory has been applied to the study of numerous models: emergency aid, road traffic, computer systems, etc. Besides, it has lead to several related disciplines such as reliability and inventory theories which deal with similar models. Nevertheless, many parts of the theory of queues were developed as a "pure science" with no practical applications. The aim of this book is to give the reader an insight into the mathematical methods which can be used in queueing theory and to present examples of solving problems with the help of these methods. Of course, the choice of the methods is quite subjective. Thus, many prominent results have not even been mentioned.
Publisher: Springer
ISBN: 9789401721981
Category : Mathematics
Languages : en
Pages : 382
Book Description
The material of this book is based on several courses which have been delivered for a long time at the Moscow Institute for Physics and Technology. Some parts have formed the subject of lectures given at various universities throughout the world: Freie Universitat of Berlin, Chalmers University of Technology and the University of Goteborg, University of California at Santa Barbara and others. The subject of the book is the theory of queues. This theory, as a mathematical discipline, begins with the work of A. Erlang, who examined a model of a telephone station and obtained the famous formula for the distribution of the number of busy lines which is named after him. Queueing theory has been applied to the study of numerous models: emergency aid, road traffic, computer systems, etc. Besides, it has lead to several related disciplines such as reliability and inventory theories which deal with similar models. Nevertheless, many parts of the theory of queues were developed as a "pure science" with no practical applications. The aim of this book is to give the reader an insight into the mathematical methods which can be used in queueing theory and to present examples of solving problems with the help of these methods. Of course, the choice of the methods is quite subjective. Thus, many prominent results have not even been mentioned.
Stochastic Models in Queueing Theory
Author: Jyotiprasad Medhi
Publisher: Elsevier
ISBN: 008054181X
Category : Mathematics
Languages : en
Pages : 501
Book Description
This is a graduate level textbook that covers the fundamental topics in queuing theory. The book has a broad coverage of methods to calculate important probabilities, and gives attention to proving the general theorems. It includes many recent topics, such as server-vacation models, diffusion approximations and optimal operating policies, and more about bulk-arrival and bull-service models than other general texts. - Current, clear and comprehensive coverage - A wealth of interesting and relevant examples and exercises to reinforce concepts - Reference lists provided after each chapter for further investigation
Publisher: Elsevier
ISBN: 008054181X
Category : Mathematics
Languages : en
Pages : 501
Book Description
This is a graduate level textbook that covers the fundamental topics in queuing theory. The book has a broad coverage of methods to calculate important probabilities, and gives attention to proving the general theorems. It includes many recent topics, such as server-vacation models, diffusion approximations and optimal operating policies, and more about bulk-arrival and bull-service models than other general texts. - Current, clear and comprehensive coverage - A wealth of interesting and relevant examples and exercises to reinforce concepts - Reference lists provided after each chapter for further investigation
Queueing Theory for Telecommunications
Author: Attahiru Sule Alfa
Publisher: Springer Science & Business Media
ISBN: 1441973141
Category : Computers
Languages : en
Pages : 248
Book Description
Queueing theory applications can be discovered in many walks of life including; transportation, manufacturing, telecommunications, computer systems and more. However, the most prevalent applications of queueing theory are in the telecommunications field. Queueing Theory for Telecommunications: Discrete Time Modelling of a Single Node System focuses on discrete time modeling and illustrates that most queueing systems encountered in real life can be set up as a Markov chain. This feature is very unique because the models are set in such a way that matrix-analytic methods are used to analyze them. Queueing Theory for Telecommunications: Discrete Time Modelling of a Single Node System is the most relevant book available on queueing models designed for applications to telecommunications. This book presents clear concise theories behind how to model and analyze key single node queues in discrete time using special tools that were presented in the second chapter. The text also delves into the types of single node queues that are very frequently encountered in telecommunication systems modeling, and provides simple methods for analyzing them. Where appropriate, alternative analysis methods are also presented. This book is for advanced-level students and researchers concentrating on engineering, computer science and mathematics as a secondary text or reference book. Professionals who work in the related industries of telecommunications, industrial engineering and communications engineering will find this book useful as well.
Publisher: Springer Science & Business Media
ISBN: 1441973141
Category : Computers
Languages : en
Pages : 248
Book Description
Queueing theory applications can be discovered in many walks of life including; transportation, manufacturing, telecommunications, computer systems and more. However, the most prevalent applications of queueing theory are in the telecommunications field. Queueing Theory for Telecommunications: Discrete Time Modelling of a Single Node System focuses on discrete time modeling and illustrates that most queueing systems encountered in real life can be set up as a Markov chain. This feature is very unique because the models are set in such a way that matrix-analytic methods are used to analyze them. Queueing Theory for Telecommunications: Discrete Time Modelling of a Single Node System is the most relevant book available on queueing models designed for applications to telecommunications. This book presents clear concise theories behind how to model and analyze key single node queues in discrete time using special tools that were presented in the second chapter. The text also delves into the types of single node queues that are very frequently encountered in telecommunication systems modeling, and provides simple methods for analyzing them. Where appropriate, alternative analysis methods are also presented. This book is for advanced-level students and researchers concentrating on engineering, computer science and mathematics as a secondary text or reference book. Professionals who work in the related industries of telecommunications, industrial engineering and communications engineering will find this book useful as well.