Mathematical Methods in Artificial Intelligence

Mathematical Methods in Artificial Intelligence PDF Author: Edward A. Bender
Publisher: Wiley-IEEE Computer Society Press
ISBN: 9780818672002
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book Here

Book Description
Mathematical Methods in Artificial Intelligence introduces the student to the important mathematical foundations and tools in AI and describes their applications to the design of AI algorithms. This useful text presents an introductory AI course based on the most important mathematics and its applications. It focuses on important topics that are proven useful in AI and involve the most broadly applicable mathematics. The book explores AI from three different viewpoints: goals, methods or tools, and achievements and failures. Its goals of reasoning, planning, learning, or language understanding and use are centered around the expert system idea. The tools of AI are presented in terms of what can be incorporated in the data structures. The book looks into the concepts and tools of limited structure, mathematical logic, logic-like representation, numerical information, and nonsymbolic structures. The text emphasizes the main mathematical tools for representing and manipulating knowledge symbolically. These are various forms of logic for qualitative knowledge, and probability and related concepts for quantitative knowledge. The main tools for manipulating knowledge nonsymbolically, as neural nets, are optimization methods and statistics. This material is covered in the text by topics such as trees and search, classical mathematical logic, and uncertainty and reasoning. A solutions diskette is available, please call for more information.

Mathematical Methods in Artificial Intelligence

Mathematical Methods in Artificial Intelligence PDF Author: Edward A. Bender
Publisher: Wiley-IEEE Computer Society Press
ISBN: 9780818672002
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book Here

Book Description
Mathematical Methods in Artificial Intelligence introduces the student to the important mathematical foundations and tools in AI and describes their applications to the design of AI algorithms. This useful text presents an introductory AI course based on the most important mathematics and its applications. It focuses on important topics that are proven useful in AI and involve the most broadly applicable mathematics. The book explores AI from three different viewpoints: goals, methods or tools, and achievements and failures. Its goals of reasoning, planning, learning, or language understanding and use are centered around the expert system idea. The tools of AI are presented in terms of what can be incorporated in the data structures. The book looks into the concepts and tools of limited structure, mathematical logic, logic-like representation, numerical information, and nonsymbolic structures. The text emphasizes the main mathematical tools for representing and manipulating knowledge symbolically. These are various forms of logic for qualitative knowledge, and probability and related concepts for quantitative knowledge. The main tools for manipulating knowledge nonsymbolically, as neural nets, are optimization methods and statistics. This material is covered in the text by topics such as trees and search, classical mathematical logic, and uncertainty and reasoning. A solutions diskette is available, please call for more information.

Mathematical Methods for Artificial Intelligence and Autonomous Systems

Mathematical Methods for Artificial Intelligence and Autonomous Systems PDF Author: Edward R. Dougherty
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 472

Get Book Here

Book Description


Mathematics for Machine Learning

Mathematics for Machine Learning PDF Author: Marc Peter Deisenroth
Publisher: Cambridge University Press
ISBN: 1108569323
Category : Computers
Languages : en
Pages : 392

Get Book Here

Book Description
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Data Science and Machine Learning

Data Science and Machine Learning PDF Author: Dirk P. Kroese
Publisher: CRC Press
ISBN: 1000730778
Category : Business & Economics
Languages : en
Pages : 538

Get Book Here

Book Description
Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code

Research Directions in Computational Mechanics

Research Directions in Computational Mechanics PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309046483
Category : Technology & Engineering
Languages : en
Pages : 145

Get Book Here

Book Description
Computational mechanics is a scientific discipline that marries physics, computers, and mathematics to emulate natural physical phenomena. It is a technology that allows scientists to study and predict the performance of various productsâ€"important for research and development in the industrialized world. This book describes current trends and future research directions in computational mechanics in areas where gaps exist in current knowledge and where major advances are crucial to continued technological developments in the United States.

Revolutionary Mathematics

Revolutionary Mathematics PDF Author: Justin Joque
Publisher: Verso Books
ISBN: 1788734009
Category : Political Science
Languages : en
Pages : 241

Get Book Here

Book Description
Traces the revolution in statistics that gave rise to artificial intelligence and predictive algorithms refiguring contemporary capitalism. Our finances, politics, media, opportunities, information, shopping and knowledge production are mediated through algorithms and their statistical approaches to knowledge; increasingly, these methods form the organizational backbone of contemporary capitalism. Revolutionary Mathematics traces the revolution in statistics and probability that has quietly underwritten the explosion of machine learning, big data and predictive algorithms that now decide many aspects of our lives. Exploring shifts in the philosophical understanding of probability in the late twentieth century, Joque shows how this was not merely a technical change but a wholesale philosophical transformation in the production of knowledge and the extraction of value. This book provides a new and unique perspective on the dangers of allowing artificial intelligence and big data to manage society. It is essential reading for those who want to understand the underlying ideological and philosophical changes that have fueled the rise of algorithms and convinced so many to blindly trust their outputs, reshaping our current political and economic situation.

Mathematical Methods in Linguistics

Mathematical Methods in Linguistics PDF Author: Barbara B.H. Partee
Publisher: Springer Science & Business Media
ISBN: 9789027722454
Category : Language Arts & Disciplines
Languages : en
Pages : 692

Get Book Here

Book Description
Elementary set theory accustoms the students to mathematical abstraction, includes the standard constructions of relations, functions, and orderings, and leads to a discussion of the various orders of infinity. The material on logic covers not only the standard statement logic and first-order predicate logic but includes an introduction to formal systems, axiomatization, and model theory. The section on algebra is presented with an emphasis on lattices as well as Boolean and Heyting algebras. Background for recent research in natural language semantics includes sections on lambda-abstraction and generalized quantifiers. Chapters on automata theory and formal languages contain a discussion of languages between context-free and context-sensitive and form the background for much current work in syntactic theory and computational linguistics. The many exercises not only reinforce basic skills but offer an entry to linguistic applications of mathematical concepts. For upper-level undergraduate students and graduate students in theoretical linguistics, computer-science students with interests in computational linguistics, logic programming and artificial intelligence, mathematicians and logicians with interests in linguistics and the semantics of natural language.

Mathematics and Programming for Machine Learning with R

Mathematics and Programming for Machine Learning with R PDF Author: William Claster
Publisher: CRC Press
ISBN: 1000196976
Category : Computers
Languages : en
Pages : 431

Get Book Here

Book Description
Based on the author’s experience in teaching data science for more than 10 years, Mathematics and Programming for Machine Learning with R: From the Ground Up reveals how machine learning algorithms do their magic and explains how these algorithms can be implemented in code. It is designed to provide readers with an understanding of the reasoning behind machine learning algorithms as well as how to program them. Written for novice programmers, the book progresses step-by-step, providing the coding skills needed to implement machine learning algorithms in R. The book begins with simple implementations and fundamental concepts of logic, sets, and probability before moving to the coverage of powerful deep learning algorithms. The first eight chapters deal with probability-based machine learning algorithms, and the last eight chapters deal with machine learning based on artificial neural networks. The first half of the book does not require mathematical sophistication, although familiarity with probability and statistics would be helpful. The second half assumes the reader is familiar with at least one semester of calculus. The text guides novice R programmers through algorithms and their application and along the way; the reader gains programming confidence in tackling advanced R programming challenges. Highlights of the book include: More than 400 exercises A strong emphasis on improving programming skills and guiding beginners to the implementation of full-fledged algorithms Coverage of fundamental computer and mathematical concepts including logic, sets, and probability In-depth explanations of machine learning algorithms

Data-Driven Science and Engineering

Data-Driven Science and Engineering PDF Author: Steven L. Brunton
Publisher: Cambridge University Press
ISBN: 1009098489
Category : Computers
Languages : en
Pages : 615

Get Book Here

Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Artificial Intelligence and Applied Mathematics in Engineering Problems

Artificial Intelligence and Applied Mathematics in Engineering Problems PDF Author: D. Jude Hemanth
Publisher: Springer Nature
ISBN: 3030361780
Category : Technology & Engineering
Languages : en
Pages : 1105

Get Book Here

Book Description
This book features research presented at the 1st International Conference on Artificial Intelligence and Applied Mathematics in Engineering, held on 20–22 April 2019 at Antalya, Manavgat (Turkey). In today’s world, various engineering areas are essential components of technological innovations and effective real-world solutions for a better future. In this context, the book focuses on problems in engineering and discusses research using artificial intelligence and applied mathematics. Intended for scientists, experts, M.Sc. and Ph.D. students, postdocs and anyone interested in the subjects covered, the book can also be used as a reference resource for courses related to artificial intelligence and applied mathematics.