Author: G. Bard Ermentrout
Publisher: Springer Science & Business Media
ISBN: 0387877088
Category : Mathematics
Languages : en
Pages : 434
Book Description
This book applies methods from nonlinear dynamics to problems in neuroscience. It uses modern mathematical approaches to understand patterns of neuronal activity seen in experiments and models of neuronal behavior. The intended audience is researchers interested in applying mathematics to important problems in neuroscience, and neuroscientists who would like to understand how to create models, as well as the mathematical and computational methods for analyzing them. The authors take a very broad approach and use many different methods to solve and understand complex models of neurons and circuits. They explain and combine numerical, analytical, dynamical systems and perturbation methods to produce a modern approach to the types of model equations that arise in neuroscience. There are extensive chapters on the role of noise, multiple time scales and spatial interactions in generating complex activity patterns found in experiments. The early chapters require little more than basic calculus and some elementary differential equations and can form the core of a computational neuroscience course. Later chapters can be used as a basis for a graduate class and as a source for current research in mathematical neuroscience. The book contains a large number of illustrations, chapter summaries and hundreds of exercises which are motivated by issues that arise in biology, and involve both computation and analysis. Bard Ermentrout is Professor of Computational Biology and Professor of Mathematics at the University of Pittsburgh. David Terman is Professor of Mathematics at the Ohio State University.
Mathematical Foundations of Neuroscience
Author: G. Bard Ermentrout
Publisher: Springer Science & Business Media
ISBN: 0387877088
Category : Mathematics
Languages : en
Pages : 434
Book Description
This book applies methods from nonlinear dynamics to problems in neuroscience. It uses modern mathematical approaches to understand patterns of neuronal activity seen in experiments and models of neuronal behavior. The intended audience is researchers interested in applying mathematics to important problems in neuroscience, and neuroscientists who would like to understand how to create models, as well as the mathematical and computational methods for analyzing them. The authors take a very broad approach and use many different methods to solve and understand complex models of neurons and circuits. They explain and combine numerical, analytical, dynamical systems and perturbation methods to produce a modern approach to the types of model equations that arise in neuroscience. There are extensive chapters on the role of noise, multiple time scales and spatial interactions in generating complex activity patterns found in experiments. The early chapters require little more than basic calculus and some elementary differential equations and can form the core of a computational neuroscience course. Later chapters can be used as a basis for a graduate class and as a source for current research in mathematical neuroscience. The book contains a large number of illustrations, chapter summaries and hundreds of exercises which are motivated by issues that arise in biology, and involve both computation and analysis. Bard Ermentrout is Professor of Computational Biology and Professor of Mathematics at the University of Pittsburgh. David Terman is Professor of Mathematics at the Ohio State University.
Publisher: Springer Science & Business Media
ISBN: 0387877088
Category : Mathematics
Languages : en
Pages : 434
Book Description
This book applies methods from nonlinear dynamics to problems in neuroscience. It uses modern mathematical approaches to understand patterns of neuronal activity seen in experiments and models of neuronal behavior. The intended audience is researchers interested in applying mathematics to important problems in neuroscience, and neuroscientists who would like to understand how to create models, as well as the mathematical and computational methods for analyzing them. The authors take a very broad approach and use many different methods to solve and understand complex models of neurons and circuits. They explain and combine numerical, analytical, dynamical systems and perturbation methods to produce a modern approach to the types of model equations that arise in neuroscience. There are extensive chapters on the role of noise, multiple time scales and spatial interactions in generating complex activity patterns found in experiments. The early chapters require little more than basic calculus and some elementary differential equations and can form the core of a computational neuroscience course. Later chapters can be used as a basis for a graduate class and as a source for current research in mathematical neuroscience. The book contains a large number of illustrations, chapter summaries and hundreds of exercises which are motivated by issues that arise in biology, and involve both computation and analysis. Bard Ermentrout is Professor of Computational Biology and Professor of Mathematics at the University of Pittsburgh. David Terman is Professor of Mathematics at the Ohio State University.
Mathematical Foundations of Neuroscience
Author: G. Bard Ermentrout
Publisher: Springer Science & Business Media
ISBN: 038787707X
Category : Mathematics
Languages : en
Pages : 434
Book Description
Arising from several courses taught by the authors, this book provides a needed overview illustrating how dynamical systems and computational analysis have been used in understanding the types of models that come out of neuroscience.
Publisher: Springer Science & Business Media
ISBN: 038787707X
Category : Mathematics
Languages : en
Pages : 434
Book Description
Arising from several courses taught by the authors, this book provides a needed overview illustrating how dynamical systems and computational analysis have been used in understanding the types of models that come out of neuroscience.
Mathematical Foundations of Neuroscience
Author: G. Bard Ermentrout
Publisher: Springer
ISBN: 9781461426219
Category : Mathematics
Languages : en
Pages : 0
Book Description
Arising from several courses taught by the authors, this book provides a needed overview illustrating how dynamical systems and computational analysis have been used in understanding the types of models that come out of neuroscience.
Publisher: Springer
ISBN: 9781461426219
Category : Mathematics
Languages : en
Pages : 0
Book Description
Arising from several courses taught by the authors, this book provides a needed overview illustrating how dynamical systems and computational analysis have been used in understanding the types of models that come out of neuroscience.
Fundamentals of Computational Neuroscience
Author: Thomas Trappenberg
Publisher: Oxford University Press (UK)
ISBN: 0199568413
Category : Mathematics
Languages : en
Pages : 417
Book Description
The new edition of Fundamentals of Computational Neuroscience build on the success and strengths of the first edition. It introduces the theoretical foundations of neuroscience with a focus on the nature of information processing in the brain. The book covers the introduction and motivation of simplified models of neurons that are suitable for exploring information processing in large brain-like networks. Additionally, it introduces several fundamental networkarchitectures and discusses their relevance for information processing in the brain, giving some examples of models of higher-order cognitive functions to demonstrate the advanced insight that can begained with such studies.
Publisher: Oxford University Press (UK)
ISBN: 0199568413
Category : Mathematics
Languages : en
Pages : 417
Book Description
The new edition of Fundamentals of Computational Neuroscience build on the success and strengths of the first edition. It introduces the theoretical foundations of neuroscience with a focus on the nature of information processing in the brain. The book covers the introduction and motivation of simplified models of neurons that are suitable for exploring information processing in large brain-like networks. Additionally, it introduces several fundamental networkarchitectures and discusses their relevance for information processing in the brain, giving some examples of models of higher-order cognitive functions to demonstrate the advanced insight that can begained with such studies.
Space, Time and Number in the Brain
Author: Elizabeth Brannon
Publisher: Academic Press
ISBN: 0123859484
Category : Mathematics
Languages : en
Pages : 375
Book Description
The study of mathematical cognition and the ways in which the ideas of space, time and number are encoded in brain circuitry has become a fundamental issue for neuroscience. How such encoding differs across cultures and educational level is of further interest in education and neuropsychology. This rapidly expanding field of research is overdue for an interdisciplinary volume such as this, which deals with the neurological and psychological foundations of human numeric capacity. A uniquely integrative work, this volume provides a much needed compilation of primary source material to researchers from basic neuroscience, psychology, developmental science, neuroimaging, neuropsychology and theoretical biology. The first comprehensive and authoritative volume dealing with neurological and psychological foundations of mathematical cognition Uniquely integrative volume at the frontier of a rapidly expanding interdisciplinary field Features outstanding and truly international scholarship, with chapters written by leading experts in a variety of fields
Publisher: Academic Press
ISBN: 0123859484
Category : Mathematics
Languages : en
Pages : 375
Book Description
The study of mathematical cognition and the ways in which the ideas of space, time and number are encoded in brain circuitry has become a fundamental issue for neuroscience. How such encoding differs across cultures and educational level is of further interest in education and neuropsychology. This rapidly expanding field of research is overdue for an interdisciplinary volume such as this, which deals with the neurological and psychological foundations of human numeric capacity. A uniquely integrative work, this volume provides a much needed compilation of primary source material to researchers from basic neuroscience, psychology, developmental science, neuroimaging, neuropsychology and theoretical biology. The first comprehensive and authoritative volume dealing with neurological and psychological foundations of mathematical cognition Uniquely integrative volume at the frontier of a rapidly expanding interdisciplinary field Features outstanding and truly international scholarship, with chapters written by leading experts in a variety of fields
Mathematics for Neuroscientists
Author: Fabrizio Gabbiani
Publisher: Academic Press
ISBN: 0128019069
Category : Mathematics
Languages : en
Pages : 630
Book Description
Mathematics for Neuroscientists, Second Edition, presents a comprehensive introduction to mathematical and computational methods used in neuroscience to describe and model neural components of the brain from ion channels to single neurons, neural networks and their relation to behavior. The book contains more than 200 figures generated using Matlab code available to the student and scholar. Mathematical concepts are introduced hand in hand with neuroscience, emphasizing the connection between experimental results and theory. - Fully revised material and corrected text - Additional chapters on extracellular potentials, motion detection and neurovascular coupling - Revised selection of exercises with solutions - More than 200 Matlab scripts reproducing the figures as well as a selection of equivalent Python scripts
Publisher: Academic Press
ISBN: 0128019069
Category : Mathematics
Languages : en
Pages : 630
Book Description
Mathematics for Neuroscientists, Second Edition, presents a comprehensive introduction to mathematical and computational methods used in neuroscience to describe and model neural components of the brain from ion channels to single neurons, neural networks and their relation to behavior. The book contains more than 200 figures generated using Matlab code available to the student and scholar. Mathematical concepts are introduced hand in hand with neuroscience, emphasizing the connection between experimental results and theory. - Fully revised material and corrected text - Additional chapters on extracellular potentials, motion detection and neurovascular coupling - Revised selection of exercises with solutions - More than 200 Matlab scripts reproducing the figures as well as a selection of equivalent Python scripts
Foundations and Methods from Mathematics to Neuroscience
Author: Colleen Crangle
Publisher: Center for the Study of Language and Information Publica Tion
ISBN: 9781575867441
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 0
Book Description
During his long and continuing scholarly career, Patrick Suppes contributed significantly both to the sciences and to their philosophies. The volume consists of papers by an international group of Suppes colleagues, collaborators, and students in many of the areas of his expertise, building on or adding to his insights. Michael Friedman offers an overview of Suppes accomplishments and of his unique perspective on the relation between science and philosophy. Paul Humphreys, Stephen Hartmann, and Tom Ryckman present essays in the philosophy of physics. Jens-Erik Fenstad, Harvey Friedman, and Jaako Hintikka consider problems in the foundations of mathematics, while the late Duncan Luce, Jean-Claude Falmagne, Brian Skyrms, and Hannes Leitgeb have contributed essays in theory of measurement, decision theory and probability. Foundations of economics and political theory are addressed by Adolfo Garcia de la Sienra, Russell Hardin, and Kenneth Arrow. Psychology, language, and philosophy of language are addressed by Elizabeth Loftus, Anne Fagot-Largeault, Willem Levelt, Dagfinn Follesdal, and Marcos Perreau-Guimares and some of Suppes most recent research in neurobiology is addressed in essays by Colleen Crangle, Acadio de Barros and Claudio Carvalhes. Finally Nancy Cartwright and Alexandre Marcelles consider the alignment (or misalignment) of method and policy. Each of the essays is accompanied by a response from Suppes."
Publisher: Center for the Study of Language and Information Publica Tion
ISBN: 9781575867441
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 0
Book Description
During his long and continuing scholarly career, Patrick Suppes contributed significantly both to the sciences and to their philosophies. The volume consists of papers by an international group of Suppes colleagues, collaborators, and students in many of the areas of his expertise, building on or adding to his insights. Michael Friedman offers an overview of Suppes accomplishments and of his unique perspective on the relation between science and philosophy. Paul Humphreys, Stephen Hartmann, and Tom Ryckman present essays in the philosophy of physics. Jens-Erik Fenstad, Harvey Friedman, and Jaako Hintikka consider problems in the foundations of mathematics, while the late Duncan Luce, Jean-Claude Falmagne, Brian Skyrms, and Hannes Leitgeb have contributed essays in theory of measurement, decision theory and probability. Foundations of economics and political theory are addressed by Adolfo Garcia de la Sienra, Russell Hardin, and Kenneth Arrow. Psychology, language, and philosophy of language are addressed by Elizabeth Loftus, Anne Fagot-Largeault, Willem Levelt, Dagfinn Follesdal, and Marcos Perreau-Guimares and some of Suppes most recent research in neurobiology is addressed in essays by Colleen Crangle, Acadio de Barros and Claudio Carvalhes. Finally Nancy Cartwright and Alexandre Marcelles consider the alignment (or misalignment) of method and policy. Each of the essays is accompanied by a response from Suppes."
Foundations of Cellular Neurophysiology
Author: Daniel Johnston
Publisher: MIT Press
ISBN: 0262293498
Category : Medical
Languages : en
Pages : 709
Book Description
with simulations and illustrations by Richard Gray Problem solving is an indispensable part of learning a quantitative science such as neurophysiology. This text for graduate and advanced undergraduate students in neuroscience, physiology, biophysics, and computational neuroscience provides comprehensive, mathematically sophisticated descriptions of modern principles of cellular neurophysiology. It is the only neurophysiology text that gives detailed derivations of equations, worked examples, and homework problem sets (with complete answers). Developed from notes for the course that the authors have taught since 1983, Foundations of Cellular Neurophysiology covers cellular neurophysiology (also some material at the molecular and systems levels) from its physical and mathematical foundations in a way that is far more rigorous than other commonly used texts in this area.
Publisher: MIT Press
ISBN: 0262293498
Category : Medical
Languages : en
Pages : 709
Book Description
with simulations and illustrations by Richard Gray Problem solving is an indispensable part of learning a quantitative science such as neurophysiology. This text for graduate and advanced undergraduate students in neuroscience, physiology, biophysics, and computational neuroscience provides comprehensive, mathematically sophisticated descriptions of modern principles of cellular neurophysiology. It is the only neurophysiology text that gives detailed derivations of equations, worked examples, and homework problem sets (with complete answers). Developed from notes for the course that the authors have taught since 1983, Foundations of Cellular Neurophysiology covers cellular neurophysiology (also some material at the molecular and systems levels) from its physical and mathematical foundations in a way that is far more rigorous than other commonly used texts in this area.
Foundations of Mathematical and Computational Economics
Author: Kamran Dadkhah
Publisher: Springer Science & Business Media
ISBN: 3642137482
Category : Business & Economics
Languages : en
Pages : 547
Book Description
This is a book on the basics of mathematics and computation and their uses in economics for modern day students and practitioners. The reader is introduced to the basics of numerical analysis as well as the use of computer programs such as Matlab and Excel in carrying out involved computations. Sections are devoted to the use of Maple in mathematical analysis. Examples drawn from recent contributions to economic theory and econometrics as well as a variety of end of chapter exercises help to illustrate and apply the presented concepts.
Publisher: Springer Science & Business Media
ISBN: 3642137482
Category : Business & Economics
Languages : en
Pages : 547
Book Description
This is a book on the basics of mathematics and computation and their uses in economics for modern day students and practitioners. The reader is introduced to the basics of numerical analysis as well as the use of computer programs such as Matlab and Excel in carrying out involved computations. Sections are devoted to the use of Maple in mathematical analysis. Examples drawn from recent contributions to economic theory and econometrics as well as a variety of end of chapter exercises help to illustrate and apply the presented concepts.
Computational Neuroscience
Author: Hanspeter A Mallot
Publisher: Springer Science & Business Media
ISBN: 3319008617
Category : Technology & Engineering
Languages : en
Pages : 142
Book Description
Computational Neuroscience - A First Course provides an essential introduction to computational neuroscience and equips readers with a fundamental understanding of modeling the nervous system at the membrane, cellular, and network level. The book, which grew out of a lecture series held regularly for more than ten years to graduate students in neuroscience with backgrounds in biology, psychology and medicine, takes its readers on a journey through three fundamental domains of computational neuroscience: membrane biophysics, systems theory and artificial neural networks. The required mathematical concepts are kept as intuitive and simple as possible throughout the book, making it fully accessible to readers who are less familiar with mathematics. Overall, Computational Neuroscience - A First Course represents an essential reference guide for all neuroscientists who use computational methods in their daily work, as well as for any theoretical scientist approaching the field of computational neuroscience.
Publisher: Springer Science & Business Media
ISBN: 3319008617
Category : Technology & Engineering
Languages : en
Pages : 142
Book Description
Computational Neuroscience - A First Course provides an essential introduction to computational neuroscience and equips readers with a fundamental understanding of modeling the nervous system at the membrane, cellular, and network level. The book, which grew out of a lecture series held regularly for more than ten years to graduate students in neuroscience with backgrounds in biology, psychology and medicine, takes its readers on a journey through three fundamental domains of computational neuroscience: membrane biophysics, systems theory and artificial neural networks. The required mathematical concepts are kept as intuitive and simple as possible throughout the book, making it fully accessible to readers who are less familiar with mathematics. Overall, Computational Neuroscience - A First Course represents an essential reference guide for all neuroscientists who use computational methods in their daily work, as well as for any theoretical scientist approaching the field of computational neuroscience.