Author: Idoia Cortes Garcia
Publisher: Springer Nature
ISBN: 3030632733
Category : Technology & Engineering
Languages : en
Pages : 171
Book Description
This book deals with the analysis and development of numerical methods for the time-domain analysis of multiphysical effects in superconducting circuits of particle accelerator magnets. An important challenge is the simulation of “quenching”, i.e. the transition of a material from the superconducting to the normally electrically conductive state. The book analyses complex mathematical structures and presents models to simulate such quenching events in the context of generalized circuit elements. Furthermore, it proposes efficient parallelized algorithms with guaranteed convergence properties for the simulation of multiphysical problems. Spanning from theoretical concepts to applied research, and featuring rigorous mathematical presentations on one side, as well as simplified explanations of many complex issues, on the other side, this book provides graduate students and researchers with a comprehensive introduction on the state of the art and a source of inspiration for future research. Moreover, the proposed concepts and methods can be extended to the simulation of multiphysical phenomena in different application contexts.
Mathematical Analysis and Simulation of Field Models in Accelerator Circuits
Author: Idoia Cortes Garcia
Publisher: Springer Nature
ISBN: 3030632733
Category : Technology & Engineering
Languages : en
Pages : 171
Book Description
This book deals with the analysis and development of numerical methods for the time-domain analysis of multiphysical effects in superconducting circuits of particle accelerator magnets. An important challenge is the simulation of “quenching”, i.e. the transition of a material from the superconducting to the normally electrically conductive state. The book analyses complex mathematical structures and presents models to simulate such quenching events in the context of generalized circuit elements. Furthermore, it proposes efficient parallelized algorithms with guaranteed convergence properties for the simulation of multiphysical problems. Spanning from theoretical concepts to applied research, and featuring rigorous mathematical presentations on one side, as well as simplified explanations of many complex issues, on the other side, this book provides graduate students and researchers with a comprehensive introduction on the state of the art and a source of inspiration for future research. Moreover, the proposed concepts and methods can be extended to the simulation of multiphysical phenomena in different application contexts.
Publisher: Springer Nature
ISBN: 3030632733
Category : Technology & Engineering
Languages : en
Pages : 171
Book Description
This book deals with the analysis and development of numerical methods for the time-domain analysis of multiphysical effects in superconducting circuits of particle accelerator magnets. An important challenge is the simulation of “quenching”, i.e. the transition of a material from the superconducting to the normally electrically conductive state. The book analyses complex mathematical structures and presents models to simulate such quenching events in the context of generalized circuit elements. Furthermore, it proposes efficient parallelized algorithms with guaranteed convergence properties for the simulation of multiphysical problems. Spanning from theoretical concepts to applied research, and featuring rigorous mathematical presentations on one side, as well as simplified explanations of many complex issues, on the other side, this book provides graduate students and researchers with a comprehensive introduction on the state of the art and a source of inspiration for future research. Moreover, the proposed concepts and methods can be extended to the simulation of multiphysical phenomena in different application contexts.
Design Methods for Reducing Failure Probabilities with Examples from Electrical Engineering
Author: Mona Fuhrländer
Publisher: Springer Nature
ISBN: 3031370198
Category : Technology & Engineering
Languages : en
Pages : 168
Book Description
This book deals with efficient estimation and optimization methods to improve the design of electrotechnical devices under uncertainty. Uncertainties caused by manufacturing imperfections, natural material variations, or unpredictable environmental influences, may lead, in turn, to deviations in operation. This book describes two novel methods for yield (or failure probability) estimation. Both are hybrid methods that combine the accuracy of Monte Carlo with the efficiency of surrogate models. The SC-Hybrid approach uses stochastic collocation and adjoint error indicators. The non-intrusive GPR-Hybrid approach consists of a Gaussian process regression that allows surrogate model updates on the fly. Furthermore, the book proposes an adaptive Newton-Monte-Carlo (Newton-MC) method for efficient yield optimization. In turn, to solve optimization problems with mixed gradient information, two novel Hermite-type optimization methods are described. All the proposed methods have been numerically evaluated on two benchmark problems, such as a rectangular waveguide and a permanent magnet synchronous machine. Results showed that the new methods can significantly reduce the computational effort of yield estimation, and of single- and multi-objective yield optimization under uncertainty. All in all, this book presents novel strategies for quantification of uncertainty and optimization under uncertainty, with practical details to improve the design of electrotechnical devices, yet the methods can be used for any design process affected by uncertainties.
Publisher: Springer Nature
ISBN: 3031370198
Category : Technology & Engineering
Languages : en
Pages : 168
Book Description
This book deals with efficient estimation and optimization methods to improve the design of electrotechnical devices under uncertainty. Uncertainties caused by manufacturing imperfections, natural material variations, or unpredictable environmental influences, may lead, in turn, to deviations in operation. This book describes two novel methods for yield (or failure probability) estimation. Both are hybrid methods that combine the accuracy of Monte Carlo with the efficiency of surrogate models. The SC-Hybrid approach uses stochastic collocation and adjoint error indicators. The non-intrusive GPR-Hybrid approach consists of a Gaussian process regression that allows surrogate model updates on the fly. Furthermore, the book proposes an adaptive Newton-Monte-Carlo (Newton-MC) method for efficient yield optimization. In turn, to solve optimization problems with mixed gradient information, two novel Hermite-type optimization methods are described. All the proposed methods have been numerically evaluated on two benchmark problems, such as a rectangular waveguide and a permanent magnet synchronous machine. Results showed that the new methods can significantly reduce the computational effort of yield estimation, and of single- and multi-objective yield optimization under uncertainty. All in all, this book presents novel strategies for quantification of uncertainty and optimization under uncertainty, with practical details to improve the design of electrotechnical devices, yet the methods can be used for any design process affected by uncertainties.
Progress in Differential-Algebraic Equations II
Author: Timo Reis
Publisher: Springer Nature
ISBN: 3030539059
Category : Mathematics
Languages : en
Pages : 486
Book Description
This book contains articles presented at the 9th Workshop on Differential-Algebraic Equations held in Paderborn, Germany, from 17–20 March 2019. The workshop brought together more than 40 mathematicians and engineers from various fields, such as numerical and functional analysis, control theory, mechanics and electromagnetic field theory. The participants focussed on the theoretical and numerical treatment of “descriptor” systems, i.e., differential-algebraic equations (DAEs). The book contains 14 contributions and is organized into four parts: mathematical analysis, numerics and model order reduction, control as well as applications. It is a useful resource for applied mathematicians with interest in recent developments in the field of differential algebraic equations but also for engineers, in particular those interested in modelling of constraint mechanical systems, thermal networks or electric circuits.
Publisher: Springer Nature
ISBN: 3030539059
Category : Mathematics
Languages : en
Pages : 486
Book Description
This book contains articles presented at the 9th Workshop on Differential-Algebraic Equations held in Paderborn, Germany, from 17–20 March 2019. The workshop brought together more than 40 mathematicians and engineers from various fields, such as numerical and functional analysis, control theory, mechanics and electromagnetic field theory. The participants focussed on the theoretical and numerical treatment of “descriptor” systems, i.e., differential-algebraic equations (DAEs). The book contains 14 contributions and is organized into four parts: mathematical analysis, numerics and model order reduction, control as well as applications. It is a useful resource for applied mathematicians with interest in recent developments in the field of differential algebraic equations but also for engineers, in particular those interested in modelling of constraint mechanical systems, thermal networks or electric circuits.
Mathematics and Computation
Author: Avi Wigderson
Publisher: Princeton University Press
ISBN: 0691189137
Category : Computers
Languages : en
Pages : 434
Book Description
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography
Publisher: Princeton University Press
ISBN: 0691189137
Category : Computers
Languages : en
Pages : 434
Book Description
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography
Science By Simulation - Volume 1: A Mezze Of Mathematical Models
Author: Andrew French
Publisher: World Scientific
ISBN: 1800611099
Category : Mathematics
Languages : en
Pages : 276
Book Description
A Mezze of Mathematical Methods is Volume 1 of Science by Simulation. It is a recipe book of mathematical models that can be enlivened by the transmutation of equations into computer code. In this volume, the examples chosen are an eclectic mix of systems and stories rooted in common experience, rather than those normally associated with constrained courses on Physics, Chemistry or Biology which are taught in isolation and susceptible to going out of date in a few years. Rather than a 'what' of Science, this book is aimed at the 'how', readily applied to projects by students and professionals. Written in a friendly style based upon the author's expertise in teaching and pedagogy, this mathematically rigorous book is designed for readers to follow arguments step-by-step with stand-alone chapters which can be read independently. This approach will provide a tangible and readily accessible context for the development of a wide range of interconnected mathematical ideas and computing methods that underpin the practice of Science.
Publisher: World Scientific
ISBN: 1800611099
Category : Mathematics
Languages : en
Pages : 276
Book Description
A Mezze of Mathematical Methods is Volume 1 of Science by Simulation. It is a recipe book of mathematical models that can be enlivened by the transmutation of equations into computer code. In this volume, the examples chosen are an eclectic mix of systems and stories rooted in common experience, rather than those normally associated with constrained courses on Physics, Chemistry or Biology which are taught in isolation and susceptible to going out of date in a few years. Rather than a 'what' of Science, this book is aimed at the 'how', readily applied to projects by students and professionals. Written in a friendly style based upon the author's expertise in teaching and pedagogy, this mathematically rigorous book is designed for readers to follow arguments step-by-step with stand-alone chapters which can be read independently. This approach will provide a tangible and readily accessible context for the development of a wide range of interconnected mathematical ideas and computing methods that underpin the practice of Science.
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 994
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 994
Book Description
Feedback Systems
Author: Karl Johan Åström
Publisher: Princeton University Press
ISBN: 069121347X
Category : Technology & Engineering
Languages : en
Pages : 523
Book Description
The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory
Publisher: Princeton University Press
ISBN: 069121347X
Category : Technology & Engineering
Languages : en
Pages : 523
Book Description
The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory
Nanoelectronic Coupled Problems Solutions
Author: E. Jan W. ter Maten
Publisher: Springer Nature
ISBN: 3030307263
Category : Mathematics
Languages : en
Pages : 587
Book Description
Designs in nanoelectronics often lead to challenging simulation problems and include strong feedback couplings. Industry demands provisions for variability in order to guarantee quality and yield. It also requires the incorporation of higher abstraction levels to allow for system simulation in order to shorten the design cycles, while at the same time preserving accuracy. The methods developed here promote a methodology for circuit-and-system-level modelling and simulation based on best practice rules, which are used to deal with coupled electromagnetic field-circuit-heat problems, as well as coupled electro-thermal-stress problems that emerge in nanoelectronic designs. This book covers: (1) advanced monolithic/multirate/co-simulation techniques, which are combined with envelope/wavelet approaches to create efficient and robust simulation techniques for strongly coupled systems that exploit the different dynamics of sub-systems within multiphysics problems, and which allow designers to predict reliability and ageing; (2) new generalized techniques in Uncertainty Quantification (UQ) for coupled problems to include a variability capability such that robust design and optimization, worst case analysis, and yield estimation with tiny failure probabilities are possible (including large deviations like 6-sigma); (3) enhanced sparse, parametric Model Order Reduction techniques with a posteriori error estimation for coupled problems and for UQ to reduce the complexity of the sub-systems while ensuring that the operational and coupling parameters can still be varied and that the reduced models offer higher abstraction levels that can be efficiently simulated. All the new algorithms produced were implemented, transferred and tested by the EDA vendor MAGWEL. Validation was conducted on industrial designs provided by end-users from the semiconductor industry, who shared their feedback, contributed to the measurements, and supplied both material data and process data. In closing, a thorough comparison to measurements on real devices was made in order to demonstrate the algorithms’ industrial applicability.
Publisher: Springer Nature
ISBN: 3030307263
Category : Mathematics
Languages : en
Pages : 587
Book Description
Designs in nanoelectronics often lead to challenging simulation problems and include strong feedback couplings. Industry demands provisions for variability in order to guarantee quality and yield. It also requires the incorporation of higher abstraction levels to allow for system simulation in order to shorten the design cycles, while at the same time preserving accuracy. The methods developed here promote a methodology for circuit-and-system-level modelling and simulation based on best practice rules, which are used to deal with coupled electromagnetic field-circuit-heat problems, as well as coupled electro-thermal-stress problems that emerge in nanoelectronic designs. This book covers: (1) advanced monolithic/multirate/co-simulation techniques, which are combined with envelope/wavelet approaches to create efficient and robust simulation techniques for strongly coupled systems that exploit the different dynamics of sub-systems within multiphysics problems, and which allow designers to predict reliability and ageing; (2) new generalized techniques in Uncertainty Quantification (UQ) for coupled problems to include a variability capability such that robust design and optimization, worst case analysis, and yield estimation with tiny failure probabilities are possible (including large deviations like 6-sigma); (3) enhanced sparse, parametric Model Order Reduction techniques with a posteriori error estimation for coupled problems and for UQ to reduce the complexity of the sub-systems while ensuring that the operational and coupling parameters can still be varied and that the reduced models offer higher abstraction levels that can be efficiently simulated. All the new algorithms produced were implemented, transferred and tested by the EDA vendor MAGWEL. Validation was conducted on industrial designs provided by end-users from the semiconductor industry, who shared their feedback, contributed to the measurements, and supplied both material data and process data. In closing, a thorough comparison to measurements on real devices was made in order to demonstrate the algorithms’ industrial applicability.
Nuclear Science Abstracts
Author:
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 658
Book Description
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 658
Book Description
High-Performance Computing Using FPGAs
Author: Wim Vanderbauwhede
Publisher: Springer Science & Business Media
ISBN: 1461417910
Category : Technology & Engineering
Languages : en
Pages : 798
Book Description
High-Performance Computing using FPGA covers the area of high performance reconfigurable computing (HPRC). This book provides an overview of architectures, tools and applications for High-Performance Reconfigurable Computing (HPRC). FPGAs offer very high I/O bandwidth and fine-grained, custom and flexible parallelism and with the ever-increasing computational needs coupled with the frequency/power wall, the increasing maturity and capabilities of FPGAs, and the advent of multicore processors which has caused the acceptance of parallel computational models. The Part on architectures will introduce different FPGA-based HPC platforms: attached co-processor HPRC architectures such as the CHREC’s Novo-G and EPCC’s Maxwell systems; tightly coupled HRPC architectures, e.g. the Convey hybrid-core computer; reconfigurably networked HPRC architectures, e.g. the QPACE system, and standalone HPRC architectures such as EPFL’s CONFETTI system. The Part on Tools will focus on high-level programming approaches for HPRC, with chapters on C-to-Gate tools (such as Impulse-C, AutoESL, Handel-C, MORA-C++); Graphical tools (MATLAB-Simulink, NI LabVIEW); Domain-specific languages, languages for heterogeneous computing(for example OpenCL, Microsoft’s Kiwi and Alchemy projects). The part on Applications will present case from several application domains where HPRC has been used successfully, such as Bioinformatics and Computational Biology; Financial Computing; Stencil computations; Information retrieval; Lattice QCD; Astrophysics simulations; Weather and climate modeling.
Publisher: Springer Science & Business Media
ISBN: 1461417910
Category : Technology & Engineering
Languages : en
Pages : 798
Book Description
High-Performance Computing using FPGA covers the area of high performance reconfigurable computing (HPRC). This book provides an overview of architectures, tools and applications for High-Performance Reconfigurable Computing (HPRC). FPGAs offer very high I/O bandwidth and fine-grained, custom and flexible parallelism and with the ever-increasing computational needs coupled with the frequency/power wall, the increasing maturity and capabilities of FPGAs, and the advent of multicore processors which has caused the acceptance of parallel computational models. The Part on architectures will introduce different FPGA-based HPC platforms: attached co-processor HPRC architectures such as the CHREC’s Novo-G and EPCC’s Maxwell systems; tightly coupled HRPC architectures, e.g. the Convey hybrid-core computer; reconfigurably networked HPRC architectures, e.g. the QPACE system, and standalone HPRC architectures such as EPFL’s CONFETTI system. The Part on Tools will focus on high-level programming approaches for HPRC, with chapters on C-to-Gate tools (such as Impulse-C, AutoESL, Handel-C, MORA-C++); Graphical tools (MATLAB-Simulink, NI LabVIEW); Domain-specific languages, languages for heterogeneous computing(for example OpenCL, Microsoft’s Kiwi and Alchemy projects). The part on Applications will present case from several application domains where HPRC has been used successfully, such as Bioinformatics and Computational Biology; Financial Computing; Stencil computations; Information retrieval; Lattice QCD; Astrophysics simulations; Weather and climate modeling.