Author: Lynn Arthur Steen
Publisher: MAA
ISBN: 9780883858189
Category : Mathematics
Languages : en
Pages : 182
Book Description
"Math and bio 2010 grew out of 'Meeting the Challenges: Education across the Biological, Mathematical and Computer Sciences,' a joint project of the Mathematical Association of America (MAA), the National Science Foundation Division of Undergraduate Education (NSF DUE), the National Institute of General Medical Sciences (NIGMS), the American Association for the Advancement of Science (AAAS), and the American Society for Microbiology (ASM)."--Foreword, p. vi
Math and Bio 2010
Author: Lynn Arthur Steen
Publisher: MAA
ISBN: 9780883858189
Category : Mathematics
Languages : en
Pages : 182
Book Description
"Math and bio 2010 grew out of 'Meeting the Challenges: Education across the Biological, Mathematical and Computer Sciences,' a joint project of the Mathematical Association of America (MAA), the National Science Foundation Division of Undergraduate Education (NSF DUE), the National Institute of General Medical Sciences (NIGMS), the American Association for the Advancement of Science (AAAS), and the American Society for Microbiology (ASM)."--Foreword, p. vi
Publisher: MAA
ISBN: 9780883858189
Category : Mathematics
Languages : en
Pages : 182
Book Description
"Math and bio 2010 grew out of 'Meeting the Challenges: Education across the Biological, Mathematical and Computer Sciences,' a joint project of the Mathematical Association of America (MAA), the National Science Foundation Division of Undergraduate Education (NSF DUE), the National Institute of General Medical Sciences (NIGMS), the American Association for the Advancement of Science (AAAS), and the American Society for Microbiology (ASM)."--Foreword, p. vi
Mathematical Biology II
Author: James D. Murray
Publisher: Springer Science & Business Media
ISBN: 0387952284
Category : Mathematics
Languages : en
Pages : 834
Book Description
This richly illustrated third edition provides a thorough training in practical mathematical biology and shows how exciting mathematical challenges can arise from a genuinely interdisciplinary involvement with the biosciences. It has been extensively updated and extended to cover much of the growth of mathematical biology. From the reviews: ""This book, a classical text in mathematical biology, cleverly combines mathematical tools with subject area sciences."--SHORT BOOK REVIEWS
Publisher: Springer Science & Business Media
ISBN: 0387952284
Category : Mathematics
Languages : en
Pages : 834
Book Description
This richly illustrated third edition provides a thorough training in practical mathematical biology and shows how exciting mathematical challenges can arise from a genuinely interdisciplinary involvement with the biosciences. It has been extensively updated and extended to cover much of the growth of mathematical biology. From the reviews: ""This book, a classical text in mathematical biology, cleverly combines mathematical tools with subject area sciences."--SHORT BOOK REVIEWS
Essential Mathematical Biology
Author: Nicholas F. Britton
Publisher: Springer Science & Business Media
ISBN: 1447100492
Category : Mathematics
Languages : en
Pages : 347
Book Description
This self-contained introduction to the fast-growing field of Mathematical Biology is written for students with a mathematical background. It sets the subject in a historical context and guides the reader towards questions of current research interest. A broad range of topics is covered including: Population dynamics, Infectious diseases, Population genetics and evolution, Dispersal, Molecular and cellular biology, Pattern formation, and Cancer modelling. Particular attention is paid to situations where the simple assumptions of homogenity made in early models break down and the process of mathematical modelling is seen in action.
Publisher: Springer Science & Business Media
ISBN: 1447100492
Category : Mathematics
Languages : en
Pages : 347
Book Description
This self-contained introduction to the fast-growing field of Mathematical Biology is written for students with a mathematical background. It sets the subject in a historical context and guides the reader towards questions of current research interest. A broad range of topics is covered including: Population dynamics, Infectious diseases, Population genetics and evolution, Dispersal, Molecular and cellular biology, Pattern formation, and Cancer modelling. Particular attention is paid to situations where the simple assumptions of homogenity made in early models break down and the process of mathematical modelling is seen in action.
Calculations for Molecular Biology and Biotechnology
Author: Frank H. Stephenson
Publisher: Academic Press
ISBN: 012375691X
Category : Science
Languages : en
Pages : 520
Book Description
Calculations for Molecular Biology and Biotechnology: A Guide to Mathematics in the Laboratory, Second Edition, provides an introduction to the myriad of laboratory calculations used in molecular biology and biotechnology. The book begins by discussing the use of scientific notation and metric prefixes, which require the use of exponents and an understanding of significant digits. It explains the mathematics involved in making solutions; the characteristics of cell growth; the multiplicity of infection; and the quantification of nucleic acids. It includes chapters that deal with the mathematics involved in the use of radioisotopes in nucleic acid research; the synthesis of oligonucleotides; the polymerase chain reaction (PCR) method; and the development of recombinant DNA technology. Protein quantification and the assessment of protein activity are also discussed, along with the centrifugation method and applications of PCR in forensics and paternity testing. - Topics range from basic scientific notations to complex subjects like nucleic acid chemistry and recombinant DNA technology - Each chapter includes a brief explanation of the concept and covers necessary definitions, theory and rationale for each type of calculation - Recent applications of the procedures and computations in clinical, academic, industrial and basic research laboratories are cited throughout the text New to this Edition: - Updated and increased coverage of real time PCR and the mathematics used to measure gene expression - More sample problems in every chapter for readers to practice concepts
Publisher: Academic Press
ISBN: 012375691X
Category : Science
Languages : en
Pages : 520
Book Description
Calculations for Molecular Biology and Biotechnology: A Guide to Mathematics in the Laboratory, Second Edition, provides an introduction to the myriad of laboratory calculations used in molecular biology and biotechnology. The book begins by discussing the use of scientific notation and metric prefixes, which require the use of exponents and an understanding of significant digits. It explains the mathematics involved in making solutions; the characteristics of cell growth; the multiplicity of infection; and the quantification of nucleic acids. It includes chapters that deal with the mathematics involved in the use of radioisotopes in nucleic acid research; the synthesis of oligonucleotides; the polymerase chain reaction (PCR) method; and the development of recombinant DNA technology. Protein quantification and the assessment of protein activity are also discussed, along with the centrifugation method and applications of PCR in forensics and paternity testing. - Topics range from basic scientific notations to complex subjects like nucleic acid chemistry and recombinant DNA technology - Each chapter includes a brief explanation of the concept and covers necessary definitions, theory and rationale for each type of calculation - Recent applications of the procedures and computations in clinical, academic, industrial and basic research laboratories are cited throughout the text New to this Edition: - Updated and increased coverage of real time PCR and the mathematics used to measure gene expression - More sample problems in every chapter for readers to practice concepts
BIO2010
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309085357
Category : Education
Languages : en
Pages : 208
Book Description
Biological sciences have been revolutionized, not only in the way research is conductedâ€"with the introduction of techniques such as recombinant DNA and digital technologyâ€"but also in how research findings are communicated among professionals and to the public. Yet, the undergraduate programs that train biology researchers remain much the same as they were before these fundamental changes came on the scene. This new volume provides a blueprint for bringing undergraduate biology education up to the speed of today's research fast track. It includes recommendations for teaching the next generation of life science investigators, through: Building a strong interdisciplinary curriculum that includes physical science, information technology, and mathematics. Eliminating the administrative and financial barriers to cross-departmental collaboration. Evaluating the impact of medical college admissions testing on undergraduate biology education. Creating early opportunities for independent research. Designing meaningful laboratory experiences into the curriculum. The committee presents a dozen brief case studies of exemplary programs at leading institutions and lists many resources for biology educators. This volume will be important to biology faculty, administrators, practitioners, professional societies, research and education funders, and the biotechnology industry.
Publisher: National Academies Press
ISBN: 0309085357
Category : Education
Languages : en
Pages : 208
Book Description
Biological sciences have been revolutionized, not only in the way research is conductedâ€"with the introduction of techniques such as recombinant DNA and digital technologyâ€"but also in how research findings are communicated among professionals and to the public. Yet, the undergraduate programs that train biology researchers remain much the same as they were before these fundamental changes came on the scene. This new volume provides a blueprint for bringing undergraduate biology education up to the speed of today's research fast track. It includes recommendations for teaching the next generation of life science investigators, through: Building a strong interdisciplinary curriculum that includes physical science, information technology, and mathematics. Eliminating the administrative and financial barriers to cross-departmental collaboration. Evaluating the impact of medical college admissions testing on undergraduate biology education. Creating early opportunities for independent research. Designing meaningful laboratory experiences into the curriculum. The committee presents a dozen brief case studies of exemplary programs at leading institutions and lists many resources for biology educators. This volume will be important to biology faculty, administrators, practitioners, professional societies, research and education funders, and the biotechnology industry.
Mathematical Methods in Biology
Author: J. David Logan
Publisher: John Wiley & Sons
ISBN: 0470525878
Category : Science
Languages : en
Pages : 437
Book Description
A one-of-a-kind guide to using deterministic and probabilistic methods for solving problems in the biological sciences Highlighting the growing relevance of quantitative techniques in scientific research, Mathematical Methods in Biology provides an accessible presentation of the broad range of important mathematical methods for solving problems in the biological sciences. The book reveals the growing connections between mathematics and biology through clear explanations and specific, interesting problems from areas such as population dynamics, foraging theory, and life history theory. The authors begin with an introduction and review of mathematical tools that are employed in subsequent chapters, including biological modeling, calculus, differential equations, dimensionless variables, and descriptive statistics. The following chapters examine standard discrete and continuous models using matrix algebra as well as difference and differential equations. Finally, the book outlines probability, statistics, and stochastic methods as well as material on bootstrapping and stochastic differential equations, which is a unique approach that is not offered in other literature on the topic. In order to demonstrate the application of mathematical methods to the biological sciences, the authors provide focused examples from the field of theoretical ecology, which serve as an accessible context for study while also demonstrating mathematical skills that are applicable to many other areas in the life sciences. The book's algorithms are illustrated using MATLAB®, but can also be replicated using other software packages, including R, Mathematica®, and Maple; however, the text does not require any single computer algebra package. Each chapter contains numerous exercises and problems that range in difficulty, from the basic to more challenging, to assist readers with building their problem-solving skills. Selected solutions are included at the back of the book, and a related Web site features supplemental material for further study. Extensively class-tested to ensure an easy-to-follow format, Mathematical Methods in Biology is an excellent book for mathematics and biology courses at the upper-undergraduate and graduate levels. It also serves as a valuable reference for researchers and professionals working in the fields of biology, ecology, and biomathematics.
Publisher: John Wiley & Sons
ISBN: 0470525878
Category : Science
Languages : en
Pages : 437
Book Description
A one-of-a-kind guide to using deterministic and probabilistic methods for solving problems in the biological sciences Highlighting the growing relevance of quantitative techniques in scientific research, Mathematical Methods in Biology provides an accessible presentation of the broad range of important mathematical methods for solving problems in the biological sciences. The book reveals the growing connections between mathematics and biology through clear explanations and specific, interesting problems from areas such as population dynamics, foraging theory, and life history theory. The authors begin with an introduction and review of mathematical tools that are employed in subsequent chapters, including biological modeling, calculus, differential equations, dimensionless variables, and descriptive statistics. The following chapters examine standard discrete and continuous models using matrix algebra as well as difference and differential equations. Finally, the book outlines probability, statistics, and stochastic methods as well as material on bootstrapping and stochastic differential equations, which is a unique approach that is not offered in other literature on the topic. In order to demonstrate the application of mathematical methods to the biological sciences, the authors provide focused examples from the field of theoretical ecology, which serve as an accessible context for study while also demonstrating mathematical skills that are applicable to many other areas in the life sciences. The book's algorithms are illustrated using MATLAB®, but can also be replicated using other software packages, including R, Mathematica®, and Maple; however, the text does not require any single computer algebra package. Each chapter contains numerous exercises and problems that range in difficulty, from the basic to more challenging, to assist readers with building their problem-solving skills. Selected solutions are included at the back of the book, and a related Web site features supplemental material for further study. Extensively class-tested to ensure an easy-to-follow format, Mathematical Methods in Biology is an excellent book for mathematics and biology courses at the upper-undergraduate and graduate levels. It also serves as a valuable reference for researchers and professionals working in the fields of biology, ecology, and biomathematics.
Undergraduate Mathematics for the Life Sciences
Author: Glenn Ledder
Publisher: MAA
ISBN: 0883851911
Category : Education
Languages : en
Pages : 228
Book Description
There is a gap between the extensive mathematics background that is beneficial to biologists and the minimal mathematics background biology students acquire in their courses. The result is an undergraduate education in biology with very little quantitative content. New mathematics courses must be devised with the needs of biology students in mind. In this volume, authors from a variety of institutions address some of the problems involved in reforming mathematics curricula for biology students. The problems are sorted into three themes: Models, Processes, and Directions. It is difficult for mathematicians to generate curriculum ideas for the training of biologists so a number of the curriculum models that have been introduced at various institutions comprise the Models section. Processes deals with taking that great course and making sure it is institutionalized in both the biology department (as a requirement) and in the mathematics department (as a course that will live on even if the creator of the course is no longer on the faculty). Directions looks to the future, with each paper laying out a case for pedagogical developments that the authors would like to see.
Publisher: MAA
ISBN: 0883851911
Category : Education
Languages : en
Pages : 228
Book Description
There is a gap between the extensive mathematics background that is beneficial to biologists and the minimal mathematics background biology students acquire in their courses. The result is an undergraduate education in biology with very little quantitative content. New mathematics courses must be devised with the needs of biology students in mind. In this volume, authors from a variety of institutions address some of the problems involved in reforming mathematics curricula for biology students. The problems are sorted into three themes: Models, Processes, and Directions. It is difficult for mathematicians to generate curriculum ideas for the training of biologists so a number of the curriculum models that have been introduced at various institutions comprise the Models section. Processes deals with taking that great course and making sure it is institutionalized in both the biology department (as a requirement) and in the mathematics department (as a course that will live on even if the creator of the course is no longer on the faculty). Directions looks to the future, with each paper laying out a case for pedagogical developments that the authors would like to see.
Mathematical Bioeconomics
Author: Colin W. Clark
Publisher: John Wiley & Sons
ISBN: 0470372990
Category : Business & Economics
Languages : en
Pages : 389
Book Description
Overall, this is an appealing work for students and professionals, and is certain to remain as one of the key works in natural resource analysis. —Mathematical Reviews Biological renewable resources, essential to the survival of mankind, are increasingly overexploited by individuals and corporations that often sacrifice long-term economic health and sustainability for short-term gains. Mathematical Bioeconomics: The Mathematics of Conservation, Third Edition analyzes the economic forces underlying these misuses of renewable resources and discusses more effective methods of resource management. Promoting a complete understanding of general principles, the book allows readers to discover how rigorous mathematical models that incorporate both economic and biological factors should replace intuitive arguments for conservation and sustainability. This Third Edition continues to combine methodologies from the fields of economics, biology, and mathematics to explain how analytic models are essential for developing a complete understanding of complex resource systems. The book has been updated to address the need for incorporating individual economic incentives, the value of diversity, and the overriding importance of uncertainty in mathematical models. Coverage of game theory, overcapacity, uncertainty, and risk analysis has been added as well a expanded treatment of topics such as: Models of individual harvest behavior and economic incentives Response of individual harvester to various types of harvesting regulations Reasons underlying excess harvesting capacity Externalities in resource harvesting industries Decision analysis in biological resource management Fundamental concepts of population dynamics and economics are utilized throughout the book while mathematical techniques are incorporated in an accessible manner. Relevant data from current research sheds light on the presented material, and exercises provide readers with an opportunity to test comprehension of discussed mathematical methods and techniques. Continuing to provide a complete and modernized presentation of the fundamental principles of the topic, Mathematical Bioeconomics, Third Edition is an excellent book for courses on applied mathematics, resource management, and environmental studies at the upper-undergraduate and graduate levels. It also serves as an insightful reference for resource managers, ecologists, biologists, and other professionals who work to improve the management of renewable resources and develop sustainable practices in the environmental sciences.
Publisher: John Wiley & Sons
ISBN: 0470372990
Category : Business & Economics
Languages : en
Pages : 389
Book Description
Overall, this is an appealing work for students and professionals, and is certain to remain as one of the key works in natural resource analysis. —Mathematical Reviews Biological renewable resources, essential to the survival of mankind, are increasingly overexploited by individuals and corporations that often sacrifice long-term economic health and sustainability for short-term gains. Mathematical Bioeconomics: The Mathematics of Conservation, Third Edition analyzes the economic forces underlying these misuses of renewable resources and discusses more effective methods of resource management. Promoting a complete understanding of general principles, the book allows readers to discover how rigorous mathematical models that incorporate both economic and biological factors should replace intuitive arguments for conservation and sustainability. This Third Edition continues to combine methodologies from the fields of economics, biology, and mathematics to explain how analytic models are essential for developing a complete understanding of complex resource systems. The book has been updated to address the need for incorporating individual economic incentives, the value of diversity, and the overriding importance of uncertainty in mathematical models. Coverage of game theory, overcapacity, uncertainty, and risk analysis has been added as well a expanded treatment of topics such as: Models of individual harvest behavior and economic incentives Response of individual harvester to various types of harvesting regulations Reasons underlying excess harvesting capacity Externalities in resource harvesting industries Decision analysis in biological resource management Fundamental concepts of population dynamics and economics are utilized throughout the book while mathematical techniques are incorporated in an accessible manner. Relevant data from current research sheds light on the presented material, and exercises provide readers with an opportunity to test comprehension of discussed mathematical methods and techniques. Continuing to provide a complete and modernized presentation of the fundamental principles of the topic, Mathematical Bioeconomics, Third Edition is an excellent book for courses on applied mathematics, resource management, and environmental studies at the upper-undergraduate and graduate levels. It also serves as an insightful reference for resource managers, ecologists, biologists, and other professionals who work to improve the management of renewable resources and develop sustainable practices in the environmental sciences.
Explorations of Mathematical Models in Biology with Maple
Author: Mazen Shahin
Publisher: John Wiley & Sons
ISBN: 111803211X
Category : Science
Languages : en
Pages : 306
Book Description
Explore and analyze the solutions of mathematical models from diverse disciplines As biology increasingly depends on data, algorithms, and models, it has become necessary to use a computing language, such as the user-friendly MapleTM, to focus more on building and analyzing models as opposed to configuring tedious calculations. Explorations of Mathematical Models in Biology with Maple provides an introduction to model creation using Maple, followed by the translation, analysis, interpretation, and observation of the models. With an integrated and interdisciplinary approach that embeds mathematical modeling into biological applications, the book illustrates numerous applications of mathematical techniques within biology, ecology, and environmental sciences. Featuring a quantitative, computational, and mathematical approach, the book includes: Examples of real-world applications, such as population dynamics, genetics, drug administration, interacting species, and the spread of contagious diseases, to showcase the relevancy and wide applicability of abstract mathematical techniques Discussion of various mathematical concepts, such as Markov chains, matrix algebra, eigenvalues, eigenvectors, first-order linear difference equations, and nonlinear first-order difference equations Coverage of difference equations to model a wide range of real-life discrete time situations in diverse areas as well as discussions on matrices to model linear problems Solutions to selected exercises and additional Maple codes Explorations of Mathematical Models in Biology with Maple is an ideal textbook for undergraduate courses in mathematical models in biology, theoretical ecology, bioeconomics, forensic science, applied mathematics, and environmental science. The book is also an excellent reference for biologists, ecologists, mathematicians, biomathematicians, and environmental and resource economists.
Publisher: John Wiley & Sons
ISBN: 111803211X
Category : Science
Languages : en
Pages : 306
Book Description
Explore and analyze the solutions of mathematical models from diverse disciplines As biology increasingly depends on data, algorithms, and models, it has become necessary to use a computing language, such as the user-friendly MapleTM, to focus more on building and analyzing models as opposed to configuring tedious calculations. Explorations of Mathematical Models in Biology with Maple provides an introduction to model creation using Maple, followed by the translation, analysis, interpretation, and observation of the models. With an integrated and interdisciplinary approach that embeds mathematical modeling into biological applications, the book illustrates numerous applications of mathematical techniques within biology, ecology, and environmental sciences. Featuring a quantitative, computational, and mathematical approach, the book includes: Examples of real-world applications, such as population dynamics, genetics, drug administration, interacting species, and the spread of contagious diseases, to showcase the relevancy and wide applicability of abstract mathematical techniques Discussion of various mathematical concepts, such as Markov chains, matrix algebra, eigenvalues, eigenvectors, first-order linear difference equations, and nonlinear first-order difference equations Coverage of difference equations to model a wide range of real-life discrete time situations in diverse areas as well as discussions on matrices to model linear problems Solutions to selected exercises and additional Maple codes Explorations of Mathematical Models in Biology with Maple is an ideal textbook for undergraduate courses in mathematical models in biology, theoretical ecology, bioeconomics, forensic science, applied mathematics, and environmental science. The book is also an excellent reference for biologists, ecologists, mathematicians, biomathematicians, and environmental and resource economists.
Explorations of Mathematical Models in Biology with MATLAB
Author: Mazen Shahin
Publisher: John Wiley & Sons
ISBN: 1118548531
Category : Science
Languages : en
Pages : 249
Book Description
Explore and analyze the solutions of mathematical models from diverse disciplines As biology increasingly depends on data, algorithms, and models, it has become necessary to use a computing language, such as the user-friendly MATLAB, to focus more on building and analyzing models as opposed to configuring tedious calculations. Explorations of Mathematical Models in Biology with MATLAB provides an introduction to model creation using MATLAB, followed by the translation, analysis, interpretation, and observation of the models. With an integrated and interdisciplinary approach that embeds mathematical modeling into biological applications, the book illustrates numerous applications of mathematical techniques within biology, ecology, and environmental sciences. Featuring a quantitative, computational, and mathematical approach, the book includes: Examples of real-world applications, such as population dynamics, genetics, drug administration, interacting species, and the spread of contagious diseases, to showcase the relevancy and wide applicability of abstract mathematical techniques Discussion of various mathematical concepts, such as Markov chains, matrix algebra, eigenvalues, eigenvectors, first-order linear difference equations, and nonlinear first-order difference equations Coverage of difference equations to model a wide range of real-life discrete time situations in diverse areas as well as discussions on matrices to model linear problems Solutions to selected exercises and additional MATLAB codes Explorations of Mathematical Models in Biology with MATLAB is an ideal textbook for upper-undergraduate courses in mathematical models in biology, theoretical ecology, bioeconomics, forensic science, applied mathematics, and environmental science. The book is also an excellent reference for biologists, ecologists, mathematicians, biomathematicians, and environmental and resource economists.
Publisher: John Wiley & Sons
ISBN: 1118548531
Category : Science
Languages : en
Pages : 249
Book Description
Explore and analyze the solutions of mathematical models from diverse disciplines As biology increasingly depends on data, algorithms, and models, it has become necessary to use a computing language, such as the user-friendly MATLAB, to focus more on building and analyzing models as opposed to configuring tedious calculations. Explorations of Mathematical Models in Biology with MATLAB provides an introduction to model creation using MATLAB, followed by the translation, analysis, interpretation, and observation of the models. With an integrated and interdisciplinary approach that embeds mathematical modeling into biological applications, the book illustrates numerous applications of mathematical techniques within biology, ecology, and environmental sciences. Featuring a quantitative, computational, and mathematical approach, the book includes: Examples of real-world applications, such as population dynamics, genetics, drug administration, interacting species, and the spread of contagious diseases, to showcase the relevancy and wide applicability of abstract mathematical techniques Discussion of various mathematical concepts, such as Markov chains, matrix algebra, eigenvalues, eigenvectors, first-order linear difference equations, and nonlinear first-order difference equations Coverage of difference equations to model a wide range of real-life discrete time situations in diverse areas as well as discussions on matrices to model linear problems Solutions to selected exercises and additional MATLAB codes Explorations of Mathematical Models in Biology with MATLAB is an ideal textbook for upper-undergraduate courses in mathematical models in biology, theoretical ecology, bioeconomics, forensic science, applied mathematics, and environmental science. The book is also an excellent reference for biologists, ecologists, mathematicians, biomathematicians, and environmental and resource economists.