Author: John C. Mauro
Publisher: Elsevier
ISBN: 0128242167
Category : Technology & Engineering
Languages : en
Pages : 554
Book Description
Materials Kinetics: Transport and Rate Phenomena provides readers with a clear understanding of how physical-chemical principles are applied to fundamental kinetic processes. The book integrates advanced concepts with foundational knowledge and cutting-edge computational approaches, demonstrating how diffusion, morphological evolution, viscosity, relaxation and other kinetic phenomena can be applied to practical materials design problems across all classes of materials. The book starts with an overview of thermodynamics, discussing equilibrium, entropy, and irreversible processes. Subsequent chapters focus on analytical and numerical solutions of the diffusion equation, covering Fick's laws, multicomponent diffusion, numerical solutions, atomic models, and diffusion in crystals, polymers, glasses, and polycrystalline materials. Dislocation and interfacial motion, kinetics of phase separation, viscosity, and advanced nucleation theories are examined next, followed by detailed analyses of glass transition and relaxation behavior. The book concludes with a series of chapters covering molecular dynamics, energy landscapes, broken ergodicity, chemical reaction kinetics, thermal and electrical conductivities, Monte Carlo simulation techniques, and master equations. - Covers the full breadth of materials kinetics, including organic and inorganic materials, solids and liquids, theory and experiments, macroscopic and microscopic interpretations, and analytical and computational approaches - Demonstrates how diffusion, viscosity microstructural evolution, relaxation, and other kinetic phenomena can be leveraged in the practical design of new materials - Provides a seamless connection between thermodynamics and kinetics - Includes practical exercises that reinforce key concepts at the end of each chapter
Materials Kinetics
Author: John C. Mauro
Publisher: Elsevier
ISBN: 0128242167
Category : Technology & Engineering
Languages : en
Pages : 554
Book Description
Materials Kinetics: Transport and Rate Phenomena provides readers with a clear understanding of how physical-chemical principles are applied to fundamental kinetic processes. The book integrates advanced concepts with foundational knowledge and cutting-edge computational approaches, demonstrating how diffusion, morphological evolution, viscosity, relaxation and other kinetic phenomena can be applied to practical materials design problems across all classes of materials. The book starts with an overview of thermodynamics, discussing equilibrium, entropy, and irreversible processes. Subsequent chapters focus on analytical and numerical solutions of the diffusion equation, covering Fick's laws, multicomponent diffusion, numerical solutions, atomic models, and diffusion in crystals, polymers, glasses, and polycrystalline materials. Dislocation and interfacial motion, kinetics of phase separation, viscosity, and advanced nucleation theories are examined next, followed by detailed analyses of glass transition and relaxation behavior. The book concludes with a series of chapters covering molecular dynamics, energy landscapes, broken ergodicity, chemical reaction kinetics, thermal and electrical conductivities, Monte Carlo simulation techniques, and master equations. - Covers the full breadth of materials kinetics, including organic and inorganic materials, solids and liquids, theory and experiments, macroscopic and microscopic interpretations, and analytical and computational approaches - Demonstrates how diffusion, viscosity microstructural evolution, relaxation, and other kinetic phenomena can be leveraged in the practical design of new materials - Provides a seamless connection between thermodynamics and kinetics - Includes practical exercises that reinforce key concepts at the end of each chapter
Publisher: Elsevier
ISBN: 0128242167
Category : Technology & Engineering
Languages : en
Pages : 554
Book Description
Materials Kinetics: Transport and Rate Phenomena provides readers with a clear understanding of how physical-chemical principles are applied to fundamental kinetic processes. The book integrates advanced concepts with foundational knowledge and cutting-edge computational approaches, demonstrating how diffusion, morphological evolution, viscosity, relaxation and other kinetic phenomena can be applied to practical materials design problems across all classes of materials. The book starts with an overview of thermodynamics, discussing equilibrium, entropy, and irreversible processes. Subsequent chapters focus on analytical and numerical solutions of the diffusion equation, covering Fick's laws, multicomponent diffusion, numerical solutions, atomic models, and diffusion in crystals, polymers, glasses, and polycrystalline materials. Dislocation and interfacial motion, kinetics of phase separation, viscosity, and advanced nucleation theories are examined next, followed by detailed analyses of glass transition and relaxation behavior. The book concludes with a series of chapters covering molecular dynamics, energy landscapes, broken ergodicity, chemical reaction kinetics, thermal and electrical conductivities, Monte Carlo simulation techniques, and master equations. - Covers the full breadth of materials kinetics, including organic and inorganic materials, solids and liquids, theory and experiments, macroscopic and microscopic interpretations, and analytical and computational approaches - Demonstrates how diffusion, viscosity microstructural evolution, relaxation, and other kinetic phenomena can be leveraged in the practical design of new materials - Provides a seamless connection between thermodynamics and kinetics - Includes practical exercises that reinforce key concepts at the end of each chapter
Kinetics of Materials
Author: Robert W. Balluffi
Publisher: John Wiley & Sons
ISBN: 0471749303
Category : Science
Languages : en
Pages : 672
Book Description
A classroom-tested textbook providing a fundamental understandingof basic kinetic processes in materials This textbook, reflecting the hands-on teaching experience of itsthree authors, evolved from Massachusetts Institute of Technology'sfirst-year graduate curriculum in the Department of MaterialsScience and Engineering. It discusses key topics collectivelyrepresenting the basic kinetic processes that cause changes in thesize, shape, composition, and atomistic structure of materials.Readers gain a deeper understanding of these kinetic processes andof the properties and applications of materials. Topics are introduced in a logical order, enabling students todevelop a solid foundation before advancing to more sophisticatedtopics. Kinetics of Materials begins with diffusion, offering adescription of the elementary manner in which atoms and moleculesmove around in solids and liquids. Next, the more complex motion ofdislocations and interfaces is addressed. Finally, still morecomplex kinetic phenomena, such as morphological evolution andphase transformations, are treated. Throughout the textbook, readers are instilled with an appreciationof the subject's analytic foundations and, in many cases, theapproximations commonly used in the field. The authors offer manyextensive derivations of important results to help illuminate theirorigins. While the principal focus is on kinetic phenomena incrystalline materials, select phenomena in noncrystalline materialsare also discussed. In many cases, the principles involved apply toall materials. Exercises with accompanying solutions are provided throughoutKinetics of Materials, enabling readers to put their newfoundknowledge into practice. In addition, bibliographies are offeredwith each chapter, helping readers to investigate specializedtopics in greater detail. Several appendices presenting importantbackground material are also included. With its unique range of topics, progressive structure, andextensive exercises, this classroom-tested textbook provides anenriching learning experience for first-year graduate students.
Publisher: John Wiley & Sons
ISBN: 0471749303
Category : Science
Languages : en
Pages : 672
Book Description
A classroom-tested textbook providing a fundamental understandingof basic kinetic processes in materials This textbook, reflecting the hands-on teaching experience of itsthree authors, evolved from Massachusetts Institute of Technology'sfirst-year graduate curriculum in the Department of MaterialsScience and Engineering. It discusses key topics collectivelyrepresenting the basic kinetic processes that cause changes in thesize, shape, composition, and atomistic structure of materials.Readers gain a deeper understanding of these kinetic processes andof the properties and applications of materials. Topics are introduced in a logical order, enabling students todevelop a solid foundation before advancing to more sophisticatedtopics. Kinetics of Materials begins with diffusion, offering adescription of the elementary manner in which atoms and moleculesmove around in solids and liquids. Next, the more complex motion ofdislocations and interfaces is addressed. Finally, still morecomplex kinetic phenomena, such as morphological evolution andphase transformations, are treated. Throughout the textbook, readers are instilled with an appreciationof the subject's analytic foundations and, in many cases, theapproximations commonly used in the field. The authors offer manyextensive derivations of important results to help illuminate theirorigins. While the principal focus is on kinetic phenomena incrystalline materials, select phenomena in noncrystalline materialsare also discussed. In many cases, the principles involved apply toall materials. Exercises with accompanying solutions are provided throughoutKinetics of Materials, enabling readers to put their newfoundknowledge into practice. In addition, bibliographies are offeredwith each chapter, helping readers to investigate specializedtopics in greater detail. Several appendices presenting importantbackground material are also included. With its unique range of topics, progressive structure, andextensive exercises, this classroom-tested textbook provides anenriching learning experience for first-year graduate students.
Materials Kinetics Fundamentals
Author: Ryan O'Hayre
Publisher: John Wiley & Sons
ISBN: 1118972899
Category : Technology & Engineering
Languages : en
Pages : 320
Book Description
Introductory kinetics for the undergrad materials scientist Materials Kinetics Fundamentals is an accessible and interesting introduction to kinetics processes, with a focus on materials systems. Designed for the undergraduate student, this book avoids intense mathematics to present the theory and application of kinetics in a clear, reader-friendly way. Students are first introduced to the fundamental concepts of kinetics, with illustrated diagrams, examples, text boxes, and homework questions that impart a unified, intuitive understanding. Further chapters cover the application of these concepts in the context of materials science, with real-world examples including silicon processing and integrated circuit fabrication, thin-film deposition, carbon-14 dating, steel degassing, energy conversion, and more. Instructor materials including a test bank are available through the companion website, providing a complete resource for the undergraduate materials science student. At its core, kinetics deals with rates, telling us how fast something will take place – for example, how fast water will evaporate, or how fast molten silicon will solidify. This book is designed to provide students with an introduction to kinetics' underlying principles, without rigorous math to distract from understanding. Understand universally important kinetic concepts like diffusion and reaction rate Model common kinetic processes both quantitatively and qualitatively Learn the mechanisms behind important and interesting materials systems Examine the behaviors, properties, and interactions of relevant solid materials There are a large number of books on chemical kinetics, but there are far fewer that focus on materials kinetics, and virtually none that provide an accessible, introductory-level treatment of the subject. Materials Kinetics Fundamentals fills that need, with clear, detailed explanations of these universal concepts.
Publisher: John Wiley & Sons
ISBN: 1118972899
Category : Technology & Engineering
Languages : en
Pages : 320
Book Description
Introductory kinetics for the undergrad materials scientist Materials Kinetics Fundamentals is an accessible and interesting introduction to kinetics processes, with a focus on materials systems. Designed for the undergraduate student, this book avoids intense mathematics to present the theory and application of kinetics in a clear, reader-friendly way. Students are first introduced to the fundamental concepts of kinetics, with illustrated diagrams, examples, text boxes, and homework questions that impart a unified, intuitive understanding. Further chapters cover the application of these concepts in the context of materials science, with real-world examples including silicon processing and integrated circuit fabrication, thin-film deposition, carbon-14 dating, steel degassing, energy conversion, and more. Instructor materials including a test bank are available through the companion website, providing a complete resource for the undergraduate materials science student. At its core, kinetics deals with rates, telling us how fast something will take place – for example, how fast water will evaporate, or how fast molten silicon will solidify. This book is designed to provide students with an introduction to kinetics' underlying principles, without rigorous math to distract from understanding. Understand universally important kinetic concepts like diffusion and reaction rate Model common kinetic processes both quantitatively and qualitatively Learn the mechanisms behind important and interesting materials systems Examine the behaviors, properties, and interactions of relevant solid materials There are a large number of books on chemical kinetics, but there are far fewer that focus on materials kinetics, and virtually none that provide an accessible, introductory-level treatment of the subject. Materials Kinetics Fundamentals fills that need, with clear, detailed explanations of these universal concepts.
Lectures on Kinetic Processes in Materials
Author: Han-Ill Yoo
Publisher: Springer Nature
ISBN: 3030259501
Category : Technology & Engineering
Languages : en
Pages : 348
Book Description
This book provides beginning graduate or senior-level undergraduate students in materials disciplines with a primer of the fundamental and quantitative ideas on kinetic processes in solid materials. Kinetics is concerned with the rate of change of the state of existence of a material system under thermodynamic driving forces. Kinetic processes in materials typically involve chemical reactions and solid state diffusion in parallel or in tandem. Thus, mathematics of diffusion in continuum is first dealt with in some depth, followed by the atomic theory of diffusion and a brief review of chemical reaction kinetics. Chemical diffusion in metals and ionic solids, diffusion-controlled kinetics of phase transformations, and kinetics of gas-solid reactions are examined. Through this course of learning, a student will become able to predict quantitatively how fast a kinetic process takes place, to understand the inner workings of the process, and to design the optimal process of material state change. Provides students with the tools to predict quantitatively how fast a kinetic process takes place and solve other diffusion related problems; Learns fundamental and quantitative ideas on kinetic processes in solid materials; Examines chemical diffusion in metals and ionic solids, diffusion-controlled kinetics of phase transformations, and kinetics of gas-solid reactions, among others; Contains end-of chapter exercise problems to help reinforce students' grasp of the concepts presented within each chapter.
Publisher: Springer Nature
ISBN: 3030259501
Category : Technology & Engineering
Languages : en
Pages : 348
Book Description
This book provides beginning graduate or senior-level undergraduate students in materials disciplines with a primer of the fundamental and quantitative ideas on kinetic processes in solid materials. Kinetics is concerned with the rate of change of the state of existence of a material system under thermodynamic driving forces. Kinetic processes in materials typically involve chemical reactions and solid state diffusion in parallel or in tandem. Thus, mathematics of diffusion in continuum is first dealt with in some depth, followed by the atomic theory of diffusion and a brief review of chemical reaction kinetics. Chemical diffusion in metals and ionic solids, diffusion-controlled kinetics of phase transformations, and kinetics of gas-solid reactions are examined. Through this course of learning, a student will become able to predict quantitatively how fast a kinetic process takes place, to understand the inner workings of the process, and to design the optimal process of material state change. Provides students with the tools to predict quantitatively how fast a kinetic process takes place and solve other diffusion related problems; Learns fundamental and quantitative ideas on kinetic processes in solid materials; Examines chemical diffusion in metals and ionic solids, diffusion-controlled kinetics of phase transformations, and kinetics of gas-solid reactions, among others; Contains end-of chapter exercise problems to help reinforce students' grasp of the concepts presented within each chapter.
Kinetics in Materials Science and Engineering
Author: Dennis W. Readey
Publisher: CRC Press
ISBN: 1482235676
Category : Science
Languages : en
Pages : 636
Book Description
"A pedagogical gem.... Professor Readey replaces ‘black-box’ explanations with detailed, insightful derivations. A wealth of practical application examples and exercise problems complement the exhaustive coverage of kinetics for all material classes." –Prof. Rainer Hebert, University of Connecticut "Prof. Readey gives a grand tour of the kinetics of materials suitable for experimentalists and modellers.... In an easy-to-read and entertaining style, this book leads the reader to fundamental, model-based understanding of kinetic processes critical to development, fabrication and application of commercially-important soft (polymers, biomaterials), hard (ceramics, metals) and composite materials. It is a must-have for anyone who really wants to understand how to make materials and how they will behave in service." --Prof. Bill Lee, Imperial College London, Fellow of the Royal Academy of Engineering "A much needed text filing the gap between an introductory course in materials science and advanced materials-specific kinetics courses. Ideal for the undergraduate interested in an in-depth study of kinetics in materials." –Prof. Mark E. Eberhart, Colorado School of Mines This book provides an in-depth introduction to the most important kinetic concepts in materials science, engineering, and processing. All types of materials are addressed, including metals, ceramics, polymers, electronic materials, biomaterials, and composites. The expert author with decades of teaching and practical experience gives a lively and accessible overview, explaining the principles that determine how long it takes to change material properties and make new and better materials. The chapters cover a broad range of topics extending from the heat treatment of steels, the processing of silicon integrated microchips, and the production of cement, to the movement of drugs through the human body. The author explicitly avoids "black box" equations, providing derivations with clear explanations.
Publisher: CRC Press
ISBN: 1482235676
Category : Science
Languages : en
Pages : 636
Book Description
"A pedagogical gem.... Professor Readey replaces ‘black-box’ explanations with detailed, insightful derivations. A wealth of practical application examples and exercise problems complement the exhaustive coverage of kinetics for all material classes." –Prof. Rainer Hebert, University of Connecticut "Prof. Readey gives a grand tour of the kinetics of materials suitable for experimentalists and modellers.... In an easy-to-read and entertaining style, this book leads the reader to fundamental, model-based understanding of kinetic processes critical to development, fabrication and application of commercially-important soft (polymers, biomaterials), hard (ceramics, metals) and composite materials. It is a must-have for anyone who really wants to understand how to make materials and how they will behave in service." --Prof. Bill Lee, Imperial College London, Fellow of the Royal Academy of Engineering "A much needed text filing the gap between an introductory course in materials science and advanced materials-specific kinetics courses. Ideal for the undergraduate interested in an in-depth study of kinetics in materials." –Prof. Mark E. Eberhart, Colorado School of Mines This book provides an in-depth introduction to the most important kinetic concepts in materials science, engineering, and processing. All types of materials are addressed, including metals, ceramics, polymers, electronic materials, biomaterials, and composites. The expert author with decades of teaching and practical experience gives a lively and accessible overview, explaining the principles that determine how long it takes to change material properties and make new and better materials. The chapters cover a broad range of topics extending from the heat treatment of steels, the processing of silicon integrated microchips, and the production of cement, to the movement of drugs through the human body. The author explicitly avoids "black box" equations, providing derivations with clear explanations.
Electrode Kinetics for Chemists, Chemical Engineers, and Materials Scientists
Author: Eliezer Gileadi
Publisher: Capstone
ISBN: 9781560816263
Category : Science
Languages : en
Pages : 620
Book Description
Offering a thorough explanation of electrode kinetics, this textbook emphasizes physical phenomena - rather than mathematical formalism - and elucidates the underlying principles of the different experimental techniques. Assuming an elementary knowledge of thermodynamics and chemical kinetics and minimal mathematical skills, coverage explores the arguments of two primary schools of thought: electrode kinetics and interfacial electrochemistry viewed as a branch of physical chemistry and from the perspective of analytical chemistry.
Publisher: Capstone
ISBN: 9781560816263
Category : Science
Languages : en
Pages : 620
Book Description
Offering a thorough explanation of electrode kinetics, this textbook emphasizes physical phenomena - rather than mathematical formalism - and elucidates the underlying principles of the different experimental techniques. Assuming an elementary knowledge of thermodynamics and chemical kinetics and minimal mathematical skills, coverage explores the arguments of two primary schools of thought: electrode kinetics and interfacial electrochemistry viewed as a branch of physical chemistry and from the perspective of analytical chemistry.
Grain Boundary Migration in Metals
Author: Gunter Gottstein
Publisher: CRC Press
ISBN: 9780849382222
Category : Technology & Engineering
Languages : en
Pages : 454
Book Description
The behavior of adjacent materials at the boundary where they meet is an essential aspect of creating new engineering materials. Grain Boundary Migration in Metals is an authoritative account of the physics of grain boundary motion, written by two highly respected researchers. They provide a comprehensive overview of current knowledge regarding the migration process and how it affects microstructure evolution, focusing their treatment exclusively on the properties and behavior of grain boundaries with well defined geometry and crystallography. With their emphasis on applications-such as the characterization of microstructure and texture, recrystallization, and grain growth-the authors effectively fill the gap between the physics of grain boundary motion and its engineering practicality. The need for better microstructural design motivates permanent thrust for research in the field, and continued rapid progress appears inevitable. Grain Boundary Migration in Metals provides a solid foundation in the phenomena and serves as a valuable reference for professionals in materials science, solid state physics, and any industry engaged in metals production and the heat treatment of metals and alloys.
Publisher: CRC Press
ISBN: 9780849382222
Category : Technology & Engineering
Languages : en
Pages : 454
Book Description
The behavior of adjacent materials at the boundary where they meet is an essential aspect of creating new engineering materials. Grain Boundary Migration in Metals is an authoritative account of the physics of grain boundary motion, written by two highly respected researchers. They provide a comprehensive overview of current knowledge regarding the migration process and how it affects microstructure evolution, focusing their treatment exclusively on the properties and behavior of grain boundaries with well defined geometry and crystallography. With their emphasis on applications-such as the characterization of microstructure and texture, recrystallization, and grain growth-the authors effectively fill the gap between the physics of grain boundary motion and its engineering practicality. The need for better microstructural design motivates permanent thrust for research in the field, and continued rapid progress appears inevitable. Grain Boundary Migration in Metals provides a solid foundation in the phenomena and serves as a valuable reference for professionals in materials science, solid state physics, and any industry engaged in metals production and the heat treatment of metals and alloys.
An Introduction to Aspects of Thermodynamics and Kinetics Relevant to Materials Science
Author: Eugene Machlin
Publisher: Elsevier
ISBN: 0080549683
Category : Science
Languages : en
Pages : 478
Book Description
This book is based on a set of notes developed over many years for an introductory course taught to seniors and entering graduate students in materials science. An Introduction to Aspects of Thermodynamics and Kinetics Relevant to Materials Science is about the application of thermodynamics and kinetics to solve problems within Materials Science. Emphasis is to provide a physical understanding of the phenomenon under discussion, with the mathematics presented as a guide. The problems are used to provide practice in quantitative application of principles, and also to give examples of applications of the general subject matter to problems having current interest and to emphasize the important physical concepts. End of chapter problems are included, as are references, and bibliography to reinforce the text. This book provides students with the theory and mathematics to understand the important physical understanding of phenomena. - Based on a set of notes developed over many years for an introductory course taught to seniors and entering graduate students in materials science - Provides students with the theory and mathematics to understand the important physical understanding of phenomena - Includes end of chapter problems, references, and bibliography to reinforce the text
Publisher: Elsevier
ISBN: 0080549683
Category : Science
Languages : en
Pages : 478
Book Description
This book is based on a set of notes developed over many years for an introductory course taught to seniors and entering graduate students in materials science. An Introduction to Aspects of Thermodynamics and Kinetics Relevant to Materials Science is about the application of thermodynamics and kinetics to solve problems within Materials Science. Emphasis is to provide a physical understanding of the phenomenon under discussion, with the mathematics presented as a guide. The problems are used to provide practice in quantitative application of principles, and also to give examples of applications of the general subject matter to problems having current interest and to emphasize the important physical concepts. End of chapter problems are included, as are references, and bibliography to reinforce the text. This book provides students with the theory and mathematics to understand the important physical understanding of phenomena. - Based on a set of notes developed over many years for an introductory course taught to seniors and entering graduate students in materials science - Provides students with the theory and mathematics to understand the important physical understanding of phenomena - Includes end of chapter problems, references, and bibliography to reinforce the text
Kinetics of Materials
Author: Robert W. Balluffi
Publisher: John Wiley & Sons
ISBN: 0471246891
Category : Science
Languages : en
Pages : 676
Book Description
KINETICS OF MATERIALS A CLASSROOM-TESTED TEXTBOOK PROVIDING A FUNDAMENTAL UNDERSTANDING OF BASIC KINETIC PROCESSES IN MATERIALS This textbook, reflecting the hands-on teaching experience of its three authors, evolved from Massachusetts Institute of Technology’s first-year graduate curriculum in the Department of Materials Science and Engineering. It discusses key topics collectively representing the basic kinetic processes that cause changes in the size, shape, composition, and atomistic structure of materials. Readers gain a deeper understanding of these kinetic processes and of the properties and applications of materials. Topics are introduced in a logical order, enabling students to develop a solid foundation before advancing to more sophisticated topics. Kinetics of Materials begins with diffusion. offering a description of the elementary manner in which atoms and molecules move around in solids and liquids. Next, the more complex motion of dislocations and interfaces is addressed. Finally, still more complex kinetic phenomena, such as morphological evolution and phase transformations, are treated. Throughout the textbook, readers are instilled with an appreciation of the subjects analytic foundations and, in many cases, the approximations commonly used in the field. The authors offer many extensive derivations of important results to help illuminate their origins. While the principal focus is on kinetic phenomena in crystalline materials, select phenomena in noncrystalline materials are also discussed. In many cases, the principles involved apply to all materials. Exercises with accompanying solutions are provided throughout Kinetics of Materials, enabling readers to put their newfound knowledge into practice. In addition, bibliographies are offered with each chapter, helping readers to investigate specialized topics in greater detail. Several appendices presenting important background material are also included. With its unique range of topics, progressive structure, and extensive exercises, this classroom- tested textbook provides an enriching learning experience for first-year graduate students.
Publisher: John Wiley & Sons
ISBN: 0471246891
Category : Science
Languages : en
Pages : 676
Book Description
KINETICS OF MATERIALS A CLASSROOM-TESTED TEXTBOOK PROVIDING A FUNDAMENTAL UNDERSTANDING OF BASIC KINETIC PROCESSES IN MATERIALS This textbook, reflecting the hands-on teaching experience of its three authors, evolved from Massachusetts Institute of Technology’s first-year graduate curriculum in the Department of Materials Science and Engineering. It discusses key topics collectively representing the basic kinetic processes that cause changes in the size, shape, composition, and atomistic structure of materials. Readers gain a deeper understanding of these kinetic processes and of the properties and applications of materials. Topics are introduced in a logical order, enabling students to develop a solid foundation before advancing to more sophisticated topics. Kinetics of Materials begins with diffusion. offering a description of the elementary manner in which atoms and molecules move around in solids and liquids. Next, the more complex motion of dislocations and interfaces is addressed. Finally, still more complex kinetic phenomena, such as morphological evolution and phase transformations, are treated. Throughout the textbook, readers are instilled with an appreciation of the subjects analytic foundations and, in many cases, the approximations commonly used in the field. The authors offer many extensive derivations of important results to help illuminate their origins. While the principal focus is on kinetic phenomena in crystalline materials, select phenomena in noncrystalline materials are also discussed. In many cases, the principles involved apply to all materials. Exercises with accompanying solutions are provided throughout Kinetics of Materials, enabling readers to put their newfound knowledge into practice. In addition, bibliographies are offered with each chapter, helping readers to investigate specialized topics in greater detail. Several appendices presenting important background material are also included. With its unique range of topics, progressive structure, and extensive exercises, this classroom- tested textbook provides an enriching learning experience for first-year graduate students.
Problems in Metallurgical Thermodynamics and Kinetics
Author: G. S. Upadhyaya
Publisher: Elsevier
ISBN: 148313993X
Category : Science
Languages : en
Pages : 270
Book Description
Problems in Metallurgical Thermodynamics and Kinetics provides an illustration of the calculations encountered in the study of metallurgical thermodynamics and kinetics, focusing on theoretical concepts and practical applications. The chapters of this book provide comprehensive account of the theories, including basic and applied numerical examples with solutions. Unsolved numerical examples drawn from a wide range of metallurgical processes are also provided at the end of each chapter. The topics discussed include the three laws of thermodynamics; Clausius-Clapeyron equation; fugacity, activity, and equilibrium constant; thermodynamics of electrochemical cells; and kinetics. This book is beneficial to undergraduate and postgraduate students in universities, polytechnics, and technical colleges.
Publisher: Elsevier
ISBN: 148313993X
Category : Science
Languages : en
Pages : 270
Book Description
Problems in Metallurgical Thermodynamics and Kinetics provides an illustration of the calculations encountered in the study of metallurgical thermodynamics and kinetics, focusing on theoretical concepts and practical applications. The chapters of this book provide comprehensive account of the theories, including basic and applied numerical examples with solutions. Unsolved numerical examples drawn from a wide range of metallurgical processes are also provided at the end of each chapter. The topics discussed include the three laws of thermodynamics; Clausius-Clapeyron equation; fugacity, activity, and equilibrium constant; thermodynamics of electrochemical cells; and kinetics. This book is beneficial to undergraduate and postgraduate students in universities, polytechnics, and technical colleges.