Author: A. Pandikumar
Publisher: Elsevier
ISBN: 0128195525
Category : Technology & Engineering
Languages : en
Pages : 542
Book Description
Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems gathers and reviews developments within the field of nanostructured functional materials towards energy conversion and storage. Contributions from leading research groups involved in interdisciplinary research in the fields of chemistry, physics and materials science and engineering are presented. Chapters dealing with the development of nanostructured materials for energy conversion processes, including oxygen reduction, methanol oxidation, oxygen evolution, hydrogen evolution, formic acid oxidation and solar cells are discussed. The work concludes with a look at the application of nanostructured functional materials in energy storage system, such as supercapacitors and batteries. With its distinguished international team of expert contributors, this book will be an indispensable tool for anyone involved in the field of energy conversion and storage, including materials engineers, scientists and academics.
Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems
Author: A. Pandikumar
Publisher: Elsevier
ISBN: 0128195525
Category : Technology & Engineering
Languages : en
Pages : 542
Book Description
Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems gathers and reviews developments within the field of nanostructured functional materials towards energy conversion and storage. Contributions from leading research groups involved in interdisciplinary research in the fields of chemistry, physics and materials science and engineering are presented. Chapters dealing with the development of nanostructured materials for energy conversion processes, including oxygen reduction, methanol oxidation, oxygen evolution, hydrogen evolution, formic acid oxidation and solar cells are discussed. The work concludes with a look at the application of nanostructured functional materials in energy storage system, such as supercapacitors and batteries. With its distinguished international team of expert contributors, this book will be an indispensable tool for anyone involved in the field of energy conversion and storage, including materials engineers, scientists and academics.
Publisher: Elsevier
ISBN: 0128195525
Category : Technology & Engineering
Languages : en
Pages : 542
Book Description
Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems gathers and reviews developments within the field of nanostructured functional materials towards energy conversion and storage. Contributions from leading research groups involved in interdisciplinary research in the fields of chemistry, physics and materials science and engineering are presented. Chapters dealing with the development of nanostructured materials for energy conversion processes, including oxygen reduction, methanol oxidation, oxygen evolution, hydrogen evolution, formic acid oxidation and solar cells are discussed. The work concludes with a look at the application of nanostructured functional materials in energy storage system, such as supercapacitors and batteries. With its distinguished international team of expert contributors, this book will be an indispensable tool for anyone involved in the field of energy conversion and storage, including materials engineers, scientists and academics.
Hydrogen Storage Materials
Author: R. G. Barnes
Publisher:
ISBN:
Category : Energy storage
Languages : en
Pages : 336
Book Description
Ames Laboratory, Iowa, USA
Publisher:
ISBN:
Category : Energy storage
Languages : en
Pages : 336
Book Description
Ames Laboratory, Iowa, USA
Emerging Materials for Energy Conversion and Storage
Author: Kuan Yew Cheong
Publisher: Elsevier
ISBN: 0128137959
Category : Technology & Engineering
Languages : en
Pages : 490
Book Description
Emerging Materials for Energy Conversion and Storage presents the state-of-art of emerging materials for energy conversion technologies (solar cells and fuel cells) and energy storage technologies (batteries, supercapacitors and hydrogen storage). The book is organized into five primary sections, each with three chapters authored by worldwide experts in the fields of materials science, physics, chemistry and engineering. It covers the fundamentals, functionalities, challenges and prospects of different classes of emerging materials, such as wide bandgap semiconductors, oxides, carbon-based nanostructures, advanced ceramics, chalcogenide nanostructures, and flexible organic electronics nanomaterials. The book is an important reference for students and researchers (from academics, but also industry) interested in understanding the properties of emerging materials. - Explores the fundamentals, challenges and prospects for the application of emerging materials in the development of energy conversion and storage devices - Presents a discussion of solar cell and photovoltaic, fuel cell, battery electrode, supercapacitor and hydrogen storage applications - Includes notable examples of energy devices based on emerging materials to illustrate recent advances in this field
Publisher: Elsevier
ISBN: 0128137959
Category : Technology & Engineering
Languages : en
Pages : 490
Book Description
Emerging Materials for Energy Conversion and Storage presents the state-of-art of emerging materials for energy conversion technologies (solar cells and fuel cells) and energy storage technologies (batteries, supercapacitors and hydrogen storage). The book is organized into five primary sections, each with three chapters authored by worldwide experts in the fields of materials science, physics, chemistry and engineering. It covers the fundamentals, functionalities, challenges and prospects of different classes of emerging materials, such as wide bandgap semiconductors, oxides, carbon-based nanostructures, advanced ceramics, chalcogenide nanostructures, and flexible organic electronics nanomaterials. The book is an important reference for students and researchers (from academics, but also industry) interested in understanding the properties of emerging materials. - Explores the fundamentals, challenges and prospects for the application of emerging materials in the development of energy conversion and storage devices - Presents a discussion of solar cell and photovoltaic, fuel cell, battery electrode, supercapacitor and hydrogen storage applications - Includes notable examples of energy devices based on emerging materials to illustrate recent advances in this field
Energy Storage and Conversion
Author: Ashok Kumar
Publisher:
ISBN: 9788184875782
Category : Electrochemical apparatus
Languages : en
Pages : 206
Book Description
Energy Storage and Conversion primarily focuses on topics profoundly relevant to electrochemical devices such as rechargeable batteries, supercapacitors and fuel cells. Ion transport plays a pivotal role in the overall output efficiency of these devices. Faster ion transport remains a limiting barrier for achieving high power/energy density electrochemical energy storage and generation devices. Hence, ion conducting materials hold the most notable key to the development of such devices. These devices have established themselves as indispensable in modern society. Their uses range from small scale electronics to large scale electric vehicles. As the scope of this research area is expanding significantly, researchers worldwide are working on increasing number of systems where the ionic conductivity in solid electrolytes is comparable not only to liquid electrolytes but to the electronic conductivity in semiconductors or metals. The outcome will certainly be reflected with emergence of high energy and power density energy storage and generation technologies. This book highlights some of the latest advances in ionic materials and their implementation in batteries, supercapacitors and fuel cells.
Publisher:
ISBN: 9788184875782
Category : Electrochemical apparatus
Languages : en
Pages : 206
Book Description
Energy Storage and Conversion primarily focuses on topics profoundly relevant to electrochemical devices such as rechargeable batteries, supercapacitors and fuel cells. Ion transport plays a pivotal role in the overall output efficiency of these devices. Faster ion transport remains a limiting barrier for achieving high power/energy density electrochemical energy storage and generation devices. Hence, ion conducting materials hold the most notable key to the development of such devices. These devices have established themselves as indispensable in modern society. Their uses range from small scale electronics to large scale electric vehicles. As the scope of this research area is expanding significantly, researchers worldwide are working on increasing number of systems where the ionic conductivity in solid electrolytes is comparable not only to liquid electrolytes but to the electronic conductivity in semiconductors or metals. The outcome will certainly be reflected with emergence of high energy and power density energy storage and generation technologies. This book highlights some of the latest advances in ionic materials and their implementation in batteries, supercapacitors and fuel cells.
Nanostructured Materials for Next-Generation Energy Storage and Conversion
Author: Ying-Pin Chen
Publisher: Springer
ISBN: 3662535149
Category : Technology & Engineering
Languages : en
Pages : 363
Book Description
Volume 1 of a 4-volume series is a concise, authoritative and an eminently readable and enjoyable experience related to hydrogen production, storage and usage for portable and stationary power. Although the major focus is on hydrogen, discussion of fossil fuels and nuclear power is also presented where appropriate. This monograph is written by recognized experts in the field, and is both timely and appropriate as this decade will see application of hydrogen as an energy carrier, for example in transportation sector. The world's reliance on fossil fuels is due to the ever growing need for energy to sustain life and on-going progress; however exploitation also brings consequences such as emission of carbon, nitrogen and sulfur dioxides into the atmosphere. The collective influence of these photochemical gases is production of acid rain and an alternation of global temperatures, leading to record high temperatures in many parts of the world. The fossil fuel is unsustainable and thus there is a critical need for alternative sustainable energy resources. One universal energy carrier is hydrogen, which is the focus of this volume. This book is suitable for those who work in the energy field as technical experts, including engineers and scientists, as well as managers, policy and decision-makers, environmentalists and consultants. Students and practitioners such as lectures, teachers, legislators and their aids in the field of energy will find this book invaluable and a practical handbook or guide in the field of sustainable energy with emphasis on hydrogen as an energy carrier.
Publisher: Springer
ISBN: 3662535149
Category : Technology & Engineering
Languages : en
Pages : 363
Book Description
Volume 1 of a 4-volume series is a concise, authoritative and an eminently readable and enjoyable experience related to hydrogen production, storage and usage for portable and stationary power. Although the major focus is on hydrogen, discussion of fossil fuels and nuclear power is also presented where appropriate. This monograph is written by recognized experts in the field, and is both timely and appropriate as this decade will see application of hydrogen as an energy carrier, for example in transportation sector. The world's reliance on fossil fuels is due to the ever growing need for energy to sustain life and on-going progress; however exploitation also brings consequences such as emission of carbon, nitrogen and sulfur dioxides into the atmosphere. The collective influence of these photochemical gases is production of acid rain and an alternation of global temperatures, leading to record high temperatures in many parts of the world. The fossil fuel is unsustainable and thus there is a critical need for alternative sustainable energy resources. One universal energy carrier is hydrogen, which is the focus of this volume. This book is suitable for those who work in the energy field as technical experts, including engineers and scientists, as well as managers, policy and decision-makers, environmentalists and consultants. Students and practitioners such as lectures, teachers, legislators and their aids in the field of energy will find this book invaluable and a practical handbook or guide in the field of sustainable energy with emphasis on hydrogen as an energy carrier.
Energy Storage
Author: Robert Huggins
Publisher: Springer
ISBN: 3319212397
Category : Technology & Engineering
Languages : en
Pages : 540
Book Description
Energy Storage explains the underlying scientific and engineering fundamentals of all major energy storage methods. These include the storage of energy as heat, in phase transitions and reversible chemical reactions, and in organic fuels and hydrogen, as well as in mechanical, electrostatic and magnetic systems. Updated coverage of electrochemical storage systems considers exciting developments in materials and methods for applications such as rapid short-term storage in hybrid and intermittent energy generation systems, and battery optimization for increasingly prevalent EV and stop-start automotive technologies. This nuanced coverage of cutting-edge advances is unique in that it does not require prior knowledge of electrochemistry. Traditional and emerging battery systems are explained, including lithium, flow and liquid batteries. Energy Storage provides a comprehensive overview of the concepts, principles and practice of energy storage that is useful to both students and professionals.
Publisher: Springer
ISBN: 3319212397
Category : Technology & Engineering
Languages : en
Pages : 540
Book Description
Energy Storage explains the underlying scientific and engineering fundamentals of all major energy storage methods. These include the storage of energy as heat, in phase transitions and reversible chemical reactions, and in organic fuels and hydrogen, as well as in mechanical, electrostatic and magnetic systems. Updated coverage of electrochemical storage systems considers exciting developments in materials and methods for applications such as rapid short-term storage in hybrid and intermittent energy generation systems, and battery optimization for increasingly prevalent EV and stop-start automotive technologies. This nuanced coverage of cutting-edge advances is unique in that it does not require prior knowledge of electrochemistry. Traditional and emerging battery systems are explained, including lithium, flow and liquid batteries. Energy Storage provides a comprehensive overview of the concepts, principles and practice of energy storage that is useful to both students and professionals.
Handbook on Battery Energy Storage System
Author: Asian Development Bank
Publisher: Asian Development Bank
ISBN: 9292614711
Category : Technology & Engineering
Languages : en
Pages : 123
Book Description
This handbook serves as a guide to deploying battery energy storage technologies, specifically for distributed energy resources and flexibility resources. Battery energy storage technology is the most promising, rapidly developed technology as it provides higher efficiency and ease of control. With energy transition through decarbonization and decentralization, energy storage plays a significant role to enhance grid efficiency by alleviating volatility from demand and supply. Energy storage also contributes to the grid integration of renewable energy and promotion of microgrid.
Publisher: Asian Development Bank
ISBN: 9292614711
Category : Technology & Engineering
Languages : en
Pages : 123
Book Description
This handbook serves as a guide to deploying battery energy storage technologies, specifically for distributed energy resources and flexibility resources. Battery energy storage technology is the most promising, rapidly developed technology as it provides higher efficiency and ease of control. With energy transition through decarbonization and decentralization, energy storage plays a significant role to enhance grid efficiency by alleviating volatility from demand and supply. Energy storage also contributes to the grid integration of renewable energy and promotion of microgrid.
Chemical Energy Storage
Author: Robert Schlögl
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110608596
Category : Technology & Engineering
Languages : en
Pages : 685
Book Description
Energy – in the headlines, discussed controversially, vital. The use of regenerative energy in many primary forms leads to the necessity to store grid dimensions for maintaining continuous supply and enabling the replacement of fossil fuel systems. Chemical energy storage is one of the possibilities besides mechano-thermal and biological systems. This work starts with the more general aspects of chemical energy storage in the context of the geosphere and evolves to dealing with aspects of electrochemistry, catalysis, synthesis of catalysts, functional analysis of catalytic processes and with the interface between electrochemistry and heterogeneous catalysis. Top-notch experts provide a sound, practical, hands-on insight into the present status of energy conversion aimed primarily at the young emerging research front.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110608596
Category : Technology & Engineering
Languages : en
Pages : 685
Book Description
Energy – in the headlines, discussed controversially, vital. The use of regenerative energy in many primary forms leads to the necessity to store grid dimensions for maintaining continuous supply and enabling the replacement of fossil fuel systems. Chemical energy storage is one of the possibilities besides mechano-thermal and biological systems. This work starts with the more general aspects of chemical energy storage in the context of the geosphere and evolves to dealing with aspects of electrochemistry, catalysis, synthesis of catalysts, functional analysis of catalytic processes and with the interface between electrochemistry and heterogeneous catalysis. Top-notch experts provide a sound, practical, hands-on insight into the present status of energy conversion aimed primarily at the young emerging research front.
2D Materials for Energy Storage and Conversion
Author: Suresh C. Pillai
Publisher:
ISBN: 9780750333184
Category : Energy storage
Languages : en
Pages : 0
Book Description
This reference text provides a comprehensive overview of the latest developments in 2D materials for energy storage and conversion. It covers a wide range of 2D materials and energy applications, including 2D heterostructures for hydrogen storage applications, cathode and anode materials for lithium and sodium-ion batteries, ultrafast lithium and sodium-ion batteries, MXenes for improved electrochemical applications and MXenes as solid-state asymmetric supercapacitors.
Publisher:
ISBN: 9780750333184
Category : Energy storage
Languages : en
Pages : 0
Book Description
This reference text provides a comprehensive overview of the latest developments in 2D materials for energy storage and conversion. It covers a wide range of 2D materials and energy applications, including 2D heterostructures for hydrogen storage applications, cathode and anode materials for lithium and sodium-ion batteries, ultrafast lithium and sodium-ion batteries, MXenes for improved electrochemical applications and MXenes as solid-state asymmetric supercapacitors.
Ceramic and Specialty Electrolytes for Energy Storage Devices
Author: Prasanth Raghavan
Publisher: CRC Press
ISBN: 1000351807
Category : Technology & Engineering
Languages : en
Pages : 335
Book Description
Ceramic and Specialty Electrolytes for Energy Storage Devices, Volume II, investigates recent progress and challenges in a wide range of ceramic solid and quasi-solid electrolytes and specialty electrolytes for energy storage devices. The influence of these electrolyte properties on the performance of different energy storage devices is discussed in detail. Features: • Offers a detailed outlook on the performance requirements and ion transportation mechanism in solid polymer electrolytes • Covers solid-state electrolytes based on oxides (perovskite, anti-perovskite) and sulfide-type ion conductor electrolytes for lithium-ion batteries followed by solid-state electrolytes based on NASICON and garnet-type ionic conductors • Discusses electrolytes employed for high-temperature lithium-ion batteries, low-temperature lithium-ion batteries, and magnesium-ion batteries • Describes sodium-ion batteries, transparent electrolytes for energy storage devices, non-platinum-based cathode electrocatalyst for direct methanol fuel cells, non-platinum-based anode electrocatalyst for direct methanol fuel cells, and ionic liquid-based electrolytes for supercapacitor applications • Suitable for readers with experience in batteries as well as newcomers to the field This book will be invaluable to researchers and engineers working on the development of next-generation energy storage devices, including materials and chemical engineers, as well as those involved in related disciplines.
Publisher: CRC Press
ISBN: 1000351807
Category : Technology & Engineering
Languages : en
Pages : 335
Book Description
Ceramic and Specialty Electrolytes for Energy Storage Devices, Volume II, investigates recent progress and challenges in a wide range of ceramic solid and quasi-solid electrolytes and specialty electrolytes for energy storage devices. The influence of these electrolyte properties on the performance of different energy storage devices is discussed in detail. Features: • Offers a detailed outlook on the performance requirements and ion transportation mechanism in solid polymer electrolytes • Covers solid-state electrolytes based on oxides (perovskite, anti-perovskite) and sulfide-type ion conductor electrolytes for lithium-ion batteries followed by solid-state electrolytes based on NASICON and garnet-type ionic conductors • Discusses electrolytes employed for high-temperature lithium-ion batteries, low-temperature lithium-ion batteries, and magnesium-ion batteries • Describes sodium-ion batteries, transparent electrolytes for energy storage devices, non-platinum-based cathode electrocatalyst for direct methanol fuel cells, non-platinum-based anode electrocatalyst for direct methanol fuel cells, and ionic liquid-based electrolytes for supercapacitor applications • Suitable for readers with experience in batteries as well as newcomers to the field This book will be invaluable to researchers and engineers working on the development of next-generation energy storage devices, including materials and chemical engineers, as well as those involved in related disciplines.