Author: Richard Palmer Reed
Publisher: ASM International(OH)
ISBN:
Category : Science
Languages : en
Pages : 618
Book Description
Materials at Low Temperatures
Author: Richard Palmer Reed
Publisher: ASM International(OH)
ISBN:
Category : Science
Languages : en
Pages : 618
Book Description
Publisher: ASM International(OH)
ISBN:
Category : Science
Languages : en
Pages : 618
Book Description
Matter and Methods at Low Temperatures
Author: Frank Pobell
Publisher: Springer Science & Business Media
ISBN: 366208578X
Category : Science
Languages : en
Pages : 328
Book Description
The aim of this book is to provide information about performing experi ments at low temperatures, as well as basic facts concerning the low tem perature properties of liquid and solid matter. To orient the reader, I begin with chapters on these low temperature properties. The major part of the book is then devoted to refrigeration techniques and to the physics on which they are based. Of equal importance, of course, are the definition and measurement of temperature; hence low temperature thermometry is extensively discussed in subsequent chapters. Finally, I describe a variety of design and construction techniques which have turned out to be useful over the years. The content of the book is based on the three-hour-per-week lecture course which I have given several times at the University of Bayreuth between 1983 and 1991. It should be particularly suited for advanced stu dents whose intended masters (diploma) or Ph.D. subject is experimental condensed matter physics at low temperatures. However, I believe that the book will also be of value to experienced scientists, since it describes sev eral very recent advances in experimental low temperature physics and technology, for example, new developments in nuclear refrigeration and thermometry.
Publisher: Springer Science & Business Media
ISBN: 366208578X
Category : Science
Languages : en
Pages : 328
Book Description
The aim of this book is to provide information about performing experi ments at low temperatures, as well as basic facts concerning the low tem perature properties of liquid and solid matter. To orient the reader, I begin with chapters on these low temperature properties. The major part of the book is then devoted to refrigeration techniques and to the physics on which they are based. Of equal importance, of course, are the definition and measurement of temperature; hence low temperature thermometry is extensively discussed in subsequent chapters. Finally, I describe a variety of design and construction techniques which have turned out to be useful over the years. The content of the book is based on the three-hour-per-week lecture course which I have given several times at the University of Bayreuth between 1983 and 1991. It should be particularly suited for advanced stu dents whose intended masters (diploma) or Ph.D. subject is experimental condensed matter physics at low temperatures. However, I believe that the book will also be of value to experienced scientists, since it describes sev eral very recent advances in experimental low temperature physics and technology, for example, new developments in nuclear refrigeration and thermometry.
Mechanical Properties of Materials at Low Temperatures
Author: D. Wigley
Publisher: Springer Science & Business Media
ISBN: 1468418874
Category : Science
Languages : en
Pages : 338
Book Description
In writing this monograph, the aim has been to consider the mechanical properties of the wide range of materials now available in such a way as to start with the fundamental nature of these properties and to follow the discussion through to the point at which the reader is able to comprehend the significance or otherwise of the large amounts of data now available in design manuals and other compilations. In short, it is hoped that this volume will be used as a companion to these data compilations and as an aid to their interpretation. In attempting to cover such a wide field, a large degree of selection has been necessary, as complete volumes have been written on topics which here have had to be covered in a few pages or less. It is inevitable that not everyone will agree with the choice made, especially if it is his own subject which has been discussed rather briefly, and the author accepts full res ponsibility for the selection made. The book is written at a level which should be easily followed by a university graduate in science or engineer ing, although, if his background has not included a course in materials science, some groundwork may be lacking.
Publisher: Springer Science & Business Media
ISBN: 1468418874
Category : Science
Languages : en
Pages : 338
Book Description
In writing this monograph, the aim has been to consider the mechanical properties of the wide range of materials now available in such a way as to start with the fundamental nature of these properties and to follow the discussion through to the point at which the reader is able to comprehend the significance or otherwise of the large amounts of data now available in design manuals and other compilations. In short, it is hoped that this volume will be used as a companion to these data compilations and as an aid to their interpretation. In attempting to cover such a wide field, a large degree of selection has been necessary, as complete volumes have been written on topics which here have had to be covered in a few pages or less. It is inevitable that not everyone will agree with the choice made, especially if it is his own subject which has been discussed rather briefly, and the author accepts full res ponsibility for the selection made. The book is written at a level which should be easily followed by a university graduate in science or engineer ing, although, if his background has not included a course in materials science, some groundwork may be lacking.
Thermal Properties of Solids at Room and Cryogenic Temperatures
Author: Guglielmo Ventura
Publisher: Springer
ISBN: 940178969X
Category : Science
Languages : en
Pages : 220
Book Description
The minimum temperature in the natural universe is 2.7 K. Laboratory refrigerators can reach temperatures in the microkelvin range. Modern industrial refrigerators cool foods at 200 K, whereas space mission payloads must be capable of working at temperatures as low as 20 K. Superconducting magnets used for NMR work at 4.2 K. Hence the properties of materials must be accurately known also at cryogenic temperatures. This book provides a guide for engineers, physicists, chemists, technicians who wish to approach the field of low-temperature material properties. The focus is on the thermal properties and a large spectrum of experimental cases is reported. The book presents updated tables of low-temperature data on materials and a thorough bibliography supplements any further research. Key Features include: ° Detailed technical description of experiments ° Description of the newest cryogenic apparatus ° Offers data on cryogenic properties of the latest new materials ° Current reference review
Publisher: Springer
ISBN: 940178969X
Category : Science
Languages : en
Pages : 220
Book Description
The minimum temperature in the natural universe is 2.7 K. Laboratory refrigerators can reach temperatures in the microkelvin range. Modern industrial refrigerators cool foods at 200 K, whereas space mission payloads must be capable of working at temperatures as low as 20 K. Superconducting magnets used for NMR work at 4.2 K. Hence the properties of materials must be accurately known also at cryogenic temperatures. This book provides a guide for engineers, physicists, chemists, technicians who wish to approach the field of low-temperature material properties. The focus is on the thermal properties and a large spectrum of experimental cases is reported. The book presents updated tables of low-temperature data on materials and a thorough bibliography supplements any further research. Key Features include: ° Detailed technical description of experiments ° Description of the newest cryogenic apparatus ° Offers data on cryogenic properties of the latest new materials ° Current reference review
Experimental Techniques for Low-Temperature Measurements
Author: Jack Ekin
Publisher: Oxford University Press
ISBN: 0198570546
Category : Science
Languages : en
Pages : 704
Book Description
Publisher description
Publisher: Oxford University Press
ISBN: 0198570546
Category : Science
Languages : en
Pages : 704
Book Description
Publisher description
Polymer Properties at Room and Cryogenic Temperatures
Author: Gunther Hartwig
Publisher: Springer Science & Business Media
ISBN: 9780306449871
Category : Science
Languages : en
Pages : 298
Book Description
Most descriptions of polymers start at room temperature and end at the melting point. This textbook starts at very low temperatures and ends at room temperature. At low temperatures, may processes and relaxations are frozen which allows singular processes or separate relaxations to be studied. At room temperatures, or at the main glass transitions, many processes overlap and the properties are determined by relaxations. At low temperatures, there are temperature ranges with negligible influences by glass transitions. They can be used for investigating so-called basic properties which arise from principles of solid state physics. The chain structure of polymers, however, requires stringent modifications for establishing solid state physics of polymers. Several processes which are specific of polymers, occur only at low temperatures. There are also technological aspects for considering polymers at low temperatures. More and more applications of polymeric materials in low temperature technology appear. Some examples are thermal and electrical insulations, support elements for cryogenic devices, low-loss materials for high frequency equipments. It is hoped that, in addition to the scientific part, a data collection in the appendix may help to apply polymers more intensively in low temperature technology. The author greatly appreciates the contributions by his coworkers of the Kernforschungszentrum Karlsruhe in measurement and discussion of many data presented in the textbook and its appendix. Fruitful disccussions with the colleagues Prof. H. Baur, Prof. S. Hunklinger, Prof. D. Munz and Prof. R.
Publisher: Springer Science & Business Media
ISBN: 9780306449871
Category : Science
Languages : en
Pages : 298
Book Description
Most descriptions of polymers start at room temperature and end at the melting point. This textbook starts at very low temperatures and ends at room temperature. At low temperatures, may processes and relaxations are frozen which allows singular processes or separate relaxations to be studied. At room temperatures, or at the main glass transitions, many processes overlap and the properties are determined by relaxations. At low temperatures, there are temperature ranges with negligible influences by glass transitions. They can be used for investigating so-called basic properties which arise from principles of solid state physics. The chain structure of polymers, however, requires stringent modifications for establishing solid state physics of polymers. Several processes which are specific of polymers, occur only at low temperatures. There are also technological aspects for considering polymers at low temperatures. More and more applications of polymeric materials in low temperature technology appear. Some examples are thermal and electrical insulations, support elements for cryogenic devices, low-loss materials for high frequency equipments. It is hoped that, in addition to the scientific part, a data collection in the appendix may help to apply polymers more intensively in low temperature technology. The author greatly appreciates the contributions by his coworkers of the Kernforschungszentrum Karlsruhe in measurement and discussion of many data presented in the textbook and its appendix. Fruitful disccussions with the colleagues Prof. H. Baur, Prof. S. Hunklinger, Prof. D. Munz and Prof. R.
Specific Heats at Low Temperatures
Author: Erode Gopal
Publisher: Springer Science & Business Media
ISBN: 1468490818
Category : Science
Languages : en
Pages : 246
Book Description
This work was begun quite some time ago at the University of Oxford during the tenure of an Overseas Scholarship of the Royal Commission for the Exhibition of 1851 and was completed at Banga lore when the author was being supported by a maintenance allowance from the CSIR Pool for unemployed scientists. It is hoped that significant developments taking place as late as the beginning of 1965 have been incorporated. The initial impetus and inspiration for the work came from Dr. K. Mendelssohn. To him and to Drs. R. W. Hill and N. E. Phillips, who went through the whole of the text, the author is obliged in more ways than one. For permission to use figures and other materials, grateful thanks are tendered to the concerned workers and institutions. The author is not so sanguine as to imagine that all technical and literary flaws have been weeded out. If others come across them, they may be charitably brought to the author's notice as proof that physics has become too vast to be comprehended by a single onlooker. E. S. RAJA GoPAL Department of Physics Indian Institute of Science Bangalore 12, India November 1965 v Contents Introduction ................................................................. .
Publisher: Springer Science & Business Media
ISBN: 1468490818
Category : Science
Languages : en
Pages : 246
Book Description
This work was begun quite some time ago at the University of Oxford during the tenure of an Overseas Scholarship of the Royal Commission for the Exhibition of 1851 and was completed at Banga lore when the author was being supported by a maintenance allowance from the CSIR Pool for unemployed scientists. It is hoped that significant developments taking place as late as the beginning of 1965 have been incorporated. The initial impetus and inspiration for the work came from Dr. K. Mendelssohn. To him and to Drs. R. W. Hill and N. E. Phillips, who went through the whole of the text, the author is obliged in more ways than one. For permission to use figures and other materials, grateful thanks are tendered to the concerned workers and institutions. The author is not so sanguine as to imagine that all technical and literary flaws have been weeded out. If others come across them, they may be charitably brought to the author's notice as proof that physics has become too vast to be comprehended by a single onlooker. E. S. RAJA GoPAL Department of Physics Indian Institute of Science Bangalore 12, India November 1965 v Contents Introduction ................................................................. .
Low Temperature Materials and Mechanisms
Author: Yoseph Bar-Cohen
Publisher: CRC Press
ISBN: 149870039X
Category : Science
Languages : en
Pages : 518
Book Description
This book addresses the growing interest in low temperature technologies. Since the subject of low temperature materials and mechanisms is multidisciplinary, the chapters reflect the broadest possible perspective of the field. Leading experts in the specific subject area address the various related science and engineering chemistry, material science, electrical engineering, mechanical engineering, metallurgy, and physics.
Publisher: CRC Press
ISBN: 149870039X
Category : Science
Languages : en
Pages : 518
Book Description
This book addresses the growing interest in low temperature technologies. Since the subject of low temperature materials and mechanisms is multidisciplinary, the chapters reflect the broadest possible perspective of the field. Leading experts in the specific subject area address the various related science and engineering chemistry, material science, electrical engineering, mechanical engineering, metallurgy, and physics.
Austenitic Steels at Low Temperatures
Author: T. Horiuchi
Publisher: Springer Science & Business Media
ISBN: 1461337305
Category : Technology & Engineering
Languages : en
Pages : 384
Book Description
The need for alternate energy sources has led to the develop ment of prototype fusion and MHD reactors. Both possible energy systems in current designs usually require the use of magnetic fields for plasma confinement and concentration. For the creation and maintenance of large 5 to 15 tesla magnetic fields, supercon ducting magnets appear more economical. But the high magnetic fields create large forces, and the complexities of the conceptual reactors create severe space restrictions. The combination of re quirements, plus the desire to keep construction costs at a mini mum, has created a need for stronger structural alloys for service at liquid helium temperature (4 K). The complexity of the required structures requires that these alloys be weldable. Furthermore, since the plasma is influenced by magnetic fields and since magnet ic forces from the use of ferromagnetic materials in many configur ations may be additive, the best structural alloy for most applica tions should be nonmagnetic. These requirements have led to consideration of higher strength austenitic steels. Strength increases at low temperatures are achieved by the addition of nitrogen. The stability of the austenitic structure is retained by adding manganese instead of nickel, which is more expensive. Research to develop these higher strength austenitic steels is in process, primarily in Japan and the United States.
Publisher: Springer Science & Business Media
ISBN: 1461337305
Category : Technology & Engineering
Languages : en
Pages : 384
Book Description
The need for alternate energy sources has led to the develop ment of prototype fusion and MHD reactors. Both possible energy systems in current designs usually require the use of magnetic fields for plasma confinement and concentration. For the creation and maintenance of large 5 to 15 tesla magnetic fields, supercon ducting magnets appear more economical. But the high magnetic fields create large forces, and the complexities of the conceptual reactors create severe space restrictions. The combination of re quirements, plus the desire to keep construction costs at a mini mum, has created a need for stronger structural alloys for service at liquid helium temperature (4 K). The complexity of the required structures requires that these alloys be weldable. Furthermore, since the plasma is influenced by magnetic fields and since magnet ic forces from the use of ferromagnetic materials in many configur ations may be additive, the best structural alloy for most applica tions should be nonmagnetic. These requirements have led to consideration of higher strength austenitic steels. Strength increases at low temperatures are achieved by the addition of nitrogen. The stability of the austenitic structure is retained by adding manganese instead of nickel, which is more expensive. Research to develop these higher strength austenitic steels is in process, primarily in Japan and the United States.
Mechanical Properties of Structural Materials at Low Temperatures
Author: Ralph Michael McClintock
Publisher:
ISBN:
Category : Metals
Languages : en
Pages : 202
Book Description
Publisher:
ISBN:
Category : Metals
Languages : en
Pages : 202
Book Description