Author: Ken Youens-Clark
Publisher: "O'Reilly Media, Inc."
ISBN: 1098100859
Category : Computers
Languages : en
Pages : 457
Book Description
Life scientists today urgently need training in bioinformatics skills. Too many bioinformatics programs are poorly written and barely maintained--usually by students and researchers who've never learned basic programming skills. This practical guide shows postdoc bioinformatics professionals and students how to exploit the best parts of Python to solve problems in biology while creating documented, tested, reproducible software. Ken Youens-Clark, author of Tiny Python Projects (Manning), demonstrates not only how to write effective Python code but also how to use tests to write and refactor scientific programs. You'll learn the latest Python features and toolsâ??including linters, formatters, type checkers, and testsâ??to create documented and tested programs. You'll also tackle 14 challenges in Rosalind, a problem-solving platform for learning bioinformatics and programming. Create command-line Python programs to document and validate parameters Write tests to verify refactor programs and confirm they're correct Address bioinformatics ideas using Python data structures and modules such as Biopython Create reproducible shortcuts and workflows using makefiles Parse essential bioinformatics file formats such as FASTA and FASTQ Find patterns of text using regular expressions Use higher-order functions in Python like filter(), map(), and reduce()
Mastering Python for Bioinformatics
Author: Ken Youens-Clark
Publisher: "O'Reilly Media, Inc."
ISBN: 1098100859
Category : Computers
Languages : en
Pages : 457
Book Description
Life scientists today urgently need training in bioinformatics skills. Too many bioinformatics programs are poorly written and barely maintained--usually by students and researchers who've never learned basic programming skills. This practical guide shows postdoc bioinformatics professionals and students how to exploit the best parts of Python to solve problems in biology while creating documented, tested, reproducible software. Ken Youens-Clark, author of Tiny Python Projects (Manning), demonstrates not only how to write effective Python code but also how to use tests to write and refactor scientific programs. You'll learn the latest Python features and toolsâ??including linters, formatters, type checkers, and testsâ??to create documented and tested programs. You'll also tackle 14 challenges in Rosalind, a problem-solving platform for learning bioinformatics and programming. Create command-line Python programs to document and validate parameters Write tests to verify refactor programs and confirm they're correct Address bioinformatics ideas using Python data structures and modules such as Biopython Create reproducible shortcuts and workflows using makefiles Parse essential bioinformatics file formats such as FASTA and FASTQ Find patterns of text using regular expressions Use higher-order functions in Python like filter(), map(), and reduce()
Publisher: "O'Reilly Media, Inc."
ISBN: 1098100859
Category : Computers
Languages : en
Pages : 457
Book Description
Life scientists today urgently need training in bioinformatics skills. Too many bioinformatics programs are poorly written and barely maintained--usually by students and researchers who've never learned basic programming skills. This practical guide shows postdoc bioinformatics professionals and students how to exploit the best parts of Python to solve problems in biology while creating documented, tested, reproducible software. Ken Youens-Clark, author of Tiny Python Projects (Manning), demonstrates not only how to write effective Python code but also how to use tests to write and refactor scientific programs. You'll learn the latest Python features and toolsâ??including linters, formatters, type checkers, and testsâ??to create documented and tested programs. You'll also tackle 14 challenges in Rosalind, a problem-solving platform for learning bioinformatics and programming. Create command-line Python programs to document and validate parameters Write tests to verify refactor programs and confirm they're correct Address bioinformatics ideas using Python data structures and modules such as Biopython Create reproducible shortcuts and workflows using makefiles Parse essential bioinformatics file formats such as FASTA and FASTQ Find patterns of text using regular expressions Use higher-order functions in Python like filter(), map(), and reduce()
Bioinformatics Programming Using Python
Author: Mitchell L Model
Publisher: "O'Reilly Media, Inc."
ISBN: 1449382908
Category : Science
Languages : en
Pages : 526
Book Description
Powerful, flexible, and easy to use, Python is an ideal language for building software tools and applications for life science research and development. This unique book shows you how to program with Python, using code examples taken directly from bioinformatics. In a short time, you'll be using sophisticated techniques and Python modules that are particularly effective for bioinformatics programming. Bioinformatics Programming Using Python is perfect for anyone involved with bioinformatics -- researchers, support staff, students, and software developers interested in writing bioinformatics applications. You'll find it useful whether you already use Python, write code in another language, or have no programming experience at all. It's an excellent self-instruction tool, as well as a handy reference when facing the challenges of real-life programming tasks. Become familiar with Python's fundamentals, including ways to develop simple applications Learn how to use Python modules for pattern matching, structured text processing, online data retrieval, and database access Discover generalized patterns that cover a large proportion of how Python code is used in bioinformatics Learn how to apply the principles and techniques of object-oriented programming Benefit from the "tips and traps" section in each chapter
Publisher: "O'Reilly Media, Inc."
ISBN: 1449382908
Category : Science
Languages : en
Pages : 526
Book Description
Powerful, flexible, and easy to use, Python is an ideal language for building software tools and applications for life science research and development. This unique book shows you how to program with Python, using code examples taken directly from bioinformatics. In a short time, you'll be using sophisticated techniques and Python modules that are particularly effective for bioinformatics programming. Bioinformatics Programming Using Python is perfect for anyone involved with bioinformatics -- researchers, support staff, students, and software developers interested in writing bioinformatics applications. You'll find it useful whether you already use Python, write code in another language, or have no programming experience at all. It's an excellent self-instruction tool, as well as a handy reference when facing the challenges of real-life programming tasks. Become familiar with Python's fundamentals, including ways to develop simple applications Learn how to use Python modules for pattern matching, structured text processing, online data retrieval, and database access Discover generalized patterns that cover a large proportion of how Python code is used in bioinformatics Learn how to apply the principles and techniques of object-oriented programming Benefit from the "tips and traps" section in each chapter
Python for Bioinformatics
Author: Sebastian Bassi
Publisher: CRC Press
ISBN: 1351976958
Category : Mathematics
Languages : en
Pages : 423
Book Description
In today's data driven biology, programming knowledge is essential in turning ideas into testable hypothesis. Based on the author’s extensive experience, Python for Bioinformatics, Second Edition helps biologists get to grips with the basics of software development. Requiring no prior knowledge of programming-related concepts, the book focuses on the easy-to-use, yet powerful, Python computer language. This new edition is updated throughout to Python 3 and is designed not just to help scientists master the basics, but to do more in less time and in a reproducible way. New developments added in this edition include NoSQL databases, the Anaconda Python distribution, graphical libraries like Bokeh, and the use of Github for collaborative development.
Publisher: CRC Press
ISBN: 1351976958
Category : Mathematics
Languages : en
Pages : 423
Book Description
In today's data driven biology, programming knowledge is essential in turning ideas into testable hypothesis. Based on the author’s extensive experience, Python for Bioinformatics, Second Edition helps biologists get to grips with the basics of software development. Requiring no prior knowledge of programming-related concepts, the book focuses on the easy-to-use, yet powerful, Python computer language. This new edition is updated throughout to Python 3 and is designed not just to help scientists master the basics, but to do more in less time and in a reproducible way. New developments added in this edition include NoSQL databases, the Anaconda Python distribution, graphical libraries like Bokeh, and the use of Github for collaborative development.
Bioinformatics Algorithms
Author: Miguel Rocha
Publisher: Academic Press
ISBN: 0128125217
Category : Technology & Engineering
Languages : en
Pages : 402
Book Description
Bioinformatics Algorithms: Design and Implementation in Python provides a comprehensive book on many of the most important bioinformatics problems, putting forward the best algorithms and showing how to implement them. The book focuses on the use of the Python programming language and its algorithms, which is quickly becoming the most popular language in the bioinformatics field. Readers will find the tools they need to improve their knowledge and skills with regard to algorithm development and implementation, and will also uncover prototypes of bioinformatics applications that demonstrate the main principles underlying real world applications. - Presents an ideal text for bioinformatics students with little to no knowledge of computer programming - Based on over 12 years of pedagogical materials used by the authors in their own classrooms - Features a companion website with downloadable codes and runnable examples (such as using Jupyter Notebooks) and exercises relating to the book
Publisher: Academic Press
ISBN: 0128125217
Category : Technology & Engineering
Languages : en
Pages : 402
Book Description
Bioinformatics Algorithms: Design and Implementation in Python provides a comprehensive book on many of the most important bioinformatics problems, putting forward the best algorithms and showing how to implement them. The book focuses on the use of the Python programming language and its algorithms, which is quickly becoming the most popular language in the bioinformatics field. Readers will find the tools they need to improve their knowledge and skills with regard to algorithm development and implementation, and will also uncover prototypes of bioinformatics applications that demonstrate the main principles underlying real world applications. - Presents an ideal text for bioinformatics students with little to no knowledge of computer programming - Based on over 12 years of pedagogical materials used by the authors in their own classrooms - Features a companion website with downloadable codes and runnable examples (such as using Jupyter Notebooks) and exercises relating to the book
Tiny Python Projects
Author: Ken Youens-Clark
Publisher: Simon and Schuster
ISBN: 1638350833
Category : Computers
Languages : en
Pages : 438
Book Description
”Tiny Python Projects is a gentle and amusing introduction to Python that will firm up key programming concepts while also making you giggle.”—Amanda Debler, Schaeffler Key Features Learn new programming concepts through 21-bitesize programs Build an insult generator, a Tic-Tac-Toe AI, a talk-like-a-pirate program, and more Discover testing techniques that will make you a better programmer Code-along with free accompanying videos on YouTube Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About The Book The 21 fun-but-powerful activities in Tiny Python Projects teach Python fundamentals through puzzles and games. You’ll be engaged and entertained with every exercise, as you learn about text manipulation, basic algorithms, and lists and dictionaries, and other foundational programming skills. Gain confidence and experience while you create each satisfying project. Instead of going quickly through a wide range of concepts, this book concentrates on the most useful skills, like text manipulation, data structures, collections, and program logic with projects that include a password creator, a word rhymer, and a Shakespearean insult generator. Author Ken Youens-Clark also teaches you good programming practice, including writing tests for your code as you go. What You Will Learn Write command-line Python programs Manipulate Python data structures Use and control randomness Write and run tests for programs and functions Download testing suites for each project This Book Is Written For For readers familiar with the basics of Python programming. About The Author Ken Youens-Clark is a Senior Scientific Programmer at the University of Arizona. He has an MS in Biosystems Engineering and has been programming for over 20 years. Table of Contents 1 How to write and test a Python program 2 The crow’s nest: Working with strings 3 Going on a picnic: Working with lists 4 Jump the Five: Working with dictionaries 5 Howler: Working with files and STDOUT 6 Words count: Reading files and STDIN, iterating lists, formatting strings 7 Gashlycrumb: Looking items up in a dictionary 8 Apples and Bananas: Find and replace 9 Dial-a-Curse: Generating random insults from lists of words 10 Telephone: Randomly mutating strings 11 Bottles of Beer Song: Writing and testing functions 12 Ransom: Randomly capitalizing text 13 Twelve Days of Christmas: Algorithm design 14 Rhymer: Using regular expressions to create rhyming words 15 The Kentucky Friar: More regular expressions 16 The Scrambler: Randomly reordering the middles of words 17 Mad Libs: Using regular expressions 18 Gematria: Numeric encoding of text using ASCII values 19 Workout of the Day: Parsing CSV files, creating text table output 20 Password strength: Generating a secure and memorable password 21 Tic-Tac-Toe: Exploring state 22 Tic-Tac-Toe redux: An interactive version with type hints
Publisher: Simon and Schuster
ISBN: 1638350833
Category : Computers
Languages : en
Pages : 438
Book Description
”Tiny Python Projects is a gentle and amusing introduction to Python that will firm up key programming concepts while also making you giggle.”—Amanda Debler, Schaeffler Key Features Learn new programming concepts through 21-bitesize programs Build an insult generator, a Tic-Tac-Toe AI, a talk-like-a-pirate program, and more Discover testing techniques that will make you a better programmer Code-along with free accompanying videos on YouTube Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About The Book The 21 fun-but-powerful activities in Tiny Python Projects teach Python fundamentals through puzzles and games. You’ll be engaged and entertained with every exercise, as you learn about text manipulation, basic algorithms, and lists and dictionaries, and other foundational programming skills. Gain confidence and experience while you create each satisfying project. Instead of going quickly through a wide range of concepts, this book concentrates on the most useful skills, like text manipulation, data structures, collections, and program logic with projects that include a password creator, a word rhymer, and a Shakespearean insult generator. Author Ken Youens-Clark also teaches you good programming practice, including writing tests for your code as you go. What You Will Learn Write command-line Python programs Manipulate Python data structures Use and control randomness Write and run tests for programs and functions Download testing suites for each project This Book Is Written For For readers familiar with the basics of Python programming. About The Author Ken Youens-Clark is a Senior Scientific Programmer at the University of Arizona. He has an MS in Biosystems Engineering and has been programming for over 20 years. Table of Contents 1 How to write and test a Python program 2 The crow’s nest: Working with strings 3 Going on a picnic: Working with lists 4 Jump the Five: Working with dictionaries 5 Howler: Working with files and STDOUT 6 Words count: Reading files and STDIN, iterating lists, formatting strings 7 Gashlycrumb: Looking items up in a dictionary 8 Apples and Bananas: Find and replace 9 Dial-a-Curse: Generating random insults from lists of words 10 Telephone: Randomly mutating strings 11 Bottles of Beer Song: Writing and testing functions 12 Ransom: Randomly capitalizing text 13 Twelve Days of Christmas: Algorithm design 14 Rhymer: Using regular expressions to create rhyming words 15 The Kentucky Friar: More regular expressions 16 The Scrambler: Randomly reordering the middles of words 17 Mad Libs: Using regular expressions 18 Gematria: Numeric encoding of text using ASCII values 19 Workout of the Day: Parsing CSV files, creating text table output 20 Password strength: Generating a secure and memorable password 21 Tic-Tac-Toe: Exploring state 22 Tic-Tac-Toe redux: An interactive version with type hints
Mastering Python Data Visualization
Author: Kirthi Raman
Publisher: Packt Publishing Ltd
ISBN: 1783988339
Category : Computers
Languages : en
Pages : 372
Book Description
Generate effective results in a variety of visually appealing charts using the plotting packages in Python About This Book Explore various tools and their strengths while building meaningful representations that can make it easier to understand data Packed with computational methods and algorithms in diverse fields of science Written in an easy-to-follow categorical style, this book discusses some niche techniques that will make your code easier to work with and reuse Who This Book Is For If you are a Python developer who performs data visualization and wants to develop existing knowledge about Python to build analytical results and produce some amazing visual display, then this book is for you. A basic knowledge level and understanding of Python libraries is assumed. What You Will Learn Gather, cleanse, access, and map data to a visual framework Recognize which visualization method is applicable and learn best practices for data visualization Get acquainted with reader-driven narratives and author-driven narratives and the principles of perception Understand why Python is an effective tool to be used for numerical computation much like MATLAB, and explore some interesting data structures that come with it Explore with various visualization choices how Python can be very useful in computation in the field of finance and statistics Get to know why Python is the second choice after Java, and is used frequently in the field of machine learning Compare Python with other visualization approaches using Julia and a JavaScript-based framework such as D3.js Discover how Python can be used in conjunction with NoSQL such as Hive to produce results efficiently in a distributed environment In Detail Python has a handful of open source libraries for numerical computations involving optimization, linear algebra, integration, interpolation, and other special functions using array objects, machine learning, data mining, and plotting. Pandas have a productive environment for data analysis. These libraries have a specific purpose and play an important role in the research into diverse domains including economics, finance, biological sciences, social science, health care, and many more. The variety of tools and approaches available within Python community is stunning, and can bolster and enhance visual story experiences. This book offers practical guidance to help you on the journey to effective data visualization. Commencing with a chapter on the data framework, which explains the transformation of data into information and eventually knowledge, this book subsequently covers the complete visualization process using the most popular Python libraries with working examples. You will learn the usage of Numpy, Scipy, IPython, MatPlotLib, Pandas, Patsy, and Scikit-Learn with a focus on generating results that can be visualized in many different ways. Further chapters are aimed at not only showing advanced techniques such as interactive plotting; numerical, graphical linear, and non-linear regression; clustering and classification, but also in helping you understand the aesthetics and best practices of data visualization. The book concludes with interesting examples such as social networks, directed graph examples in real-life, data structures appropriate for these problems, and network analysis. By the end of this book, you will be able to effectively solve a broad set of data analysis problems. Style and approach The approach of this book is not step by step, but rather categorical. The categories are based on fields such as bioinformatics, statistical and machine learning, financial computation, and linear algebra. This approach is beneficial for the community in many different fields of work and also helps you learn how one approach can make sense across many fields
Publisher: Packt Publishing Ltd
ISBN: 1783988339
Category : Computers
Languages : en
Pages : 372
Book Description
Generate effective results in a variety of visually appealing charts using the plotting packages in Python About This Book Explore various tools and their strengths while building meaningful representations that can make it easier to understand data Packed with computational methods and algorithms in diverse fields of science Written in an easy-to-follow categorical style, this book discusses some niche techniques that will make your code easier to work with and reuse Who This Book Is For If you are a Python developer who performs data visualization and wants to develop existing knowledge about Python to build analytical results and produce some amazing visual display, then this book is for you. A basic knowledge level and understanding of Python libraries is assumed. What You Will Learn Gather, cleanse, access, and map data to a visual framework Recognize which visualization method is applicable and learn best practices for data visualization Get acquainted with reader-driven narratives and author-driven narratives and the principles of perception Understand why Python is an effective tool to be used for numerical computation much like MATLAB, and explore some interesting data structures that come with it Explore with various visualization choices how Python can be very useful in computation in the field of finance and statistics Get to know why Python is the second choice after Java, and is used frequently in the field of machine learning Compare Python with other visualization approaches using Julia and a JavaScript-based framework such as D3.js Discover how Python can be used in conjunction with NoSQL such as Hive to produce results efficiently in a distributed environment In Detail Python has a handful of open source libraries for numerical computations involving optimization, linear algebra, integration, interpolation, and other special functions using array objects, machine learning, data mining, and plotting. Pandas have a productive environment for data analysis. These libraries have a specific purpose and play an important role in the research into diverse domains including economics, finance, biological sciences, social science, health care, and many more. The variety of tools and approaches available within Python community is stunning, and can bolster and enhance visual story experiences. This book offers practical guidance to help you on the journey to effective data visualization. Commencing with a chapter on the data framework, which explains the transformation of data into information and eventually knowledge, this book subsequently covers the complete visualization process using the most popular Python libraries with working examples. You will learn the usage of Numpy, Scipy, IPython, MatPlotLib, Pandas, Patsy, and Scikit-Learn with a focus on generating results that can be visualized in many different ways. Further chapters are aimed at not only showing advanced techniques such as interactive plotting; numerical, graphical linear, and non-linear regression; clustering and classification, but also in helping you understand the aesthetics and best practices of data visualization. The book concludes with interesting examples such as social networks, directed graph examples in real-life, data structures appropriate for these problems, and network analysis. By the end of this book, you will be able to effectively solve a broad set of data analysis problems. Style and approach The approach of this book is not step by step, but rather categorical. The categories are based on fields such as bioinformatics, statistical and machine learning, financial computation, and linear algebra. This approach is beneficial for the community in many different fields of work and also helps you learn how one approach can make sense across many fields
Python for Biologists
Author: Martin Jones
Publisher: Createspace Independent Publishing Platform
ISBN:
Category : Computers
Languages : en
Pages : 248
Book Description
Python for biologists is a complete programming course for beginners that will give you the skills you need to tackle common biological and bioinformatics problems.
Publisher: Createspace Independent Publishing Platform
ISBN:
Category : Computers
Languages : en
Pages : 248
Book Description
Python for biologists is a complete programming course for beginners that will give you the skills you need to tackle common biological and bioinformatics problems.
Perl Programming for Biologists
Author: D. Curtis Jamison
Publisher: John Wiley & Sons
ISBN: 9780471430599
Category : Medical
Languages : en
Pages : 206
Book Description
Working on the assumption that the reader has no formal training in programming, Perl Programming for Biologists demonstrates how Perl is used to solve biological problems. Each chapter opens with a set of learning objectives, provides numerous review questions and self-study exercises, and concludes with a bulleted summary of key points. The author incorporates numerous real-life examples throughout the text. Upon completing the book, readers are able to quickly perform such tasks as correcting recurring errors in spreadsheets, scanning a Fasta sequence for every occurrence of an EcoRI site, adapting other writers' scripts to one's own purposes, and most important, writing reusable and maintainable scripts that spare the rote repetition of code.
Publisher: John Wiley & Sons
ISBN: 9780471430599
Category : Medical
Languages : en
Pages : 206
Book Description
Working on the assumption that the reader has no formal training in programming, Perl Programming for Biologists demonstrates how Perl is used to solve biological problems. Each chapter opens with a set of learning objectives, provides numerous review questions and self-study exercises, and concludes with a bulleted summary of key points. The author incorporates numerous real-life examples throughout the text. Upon completing the book, readers are able to quickly perform such tasks as correcting recurring errors in spreadsheets, scanning a Fasta sequence for every occurrence of an EcoRI site, adapting other writers' scripts to one's own purposes, and most important, writing reusable and maintainable scripts that spare the rote repetition of code.
Mastering Python Scientific Computing
Author: Hemant Kumar Mehta
Publisher: Packt Publishing Ltd
ISBN: 1783288833
Category : Computers
Languages : en
Pages : 301
Book Description
A complete guide for Python programmers to master scientific computing using Python APIs and tools About This Book The basics of scientific computing to advanced concepts involving parallel and large scale computation are all covered. Most of the Python APIs and tools used in scientific computing are discussed in detail The concepts are discussed with suitable example programs Who This Book Is For If you are a Python programmer and want to get your hands on scientific computing, this book is for you. The book expects you to have had exposure to various concepts of Python programming. What You Will Learn Fundamentals and components of scientific computing Scientific computing data management Performing numerical computing using NumPy and SciPy Concepts and programming for symbolic computing using SymPy Using the plotting library matplotlib for data visualization Data analysis and visualization using Pandas, matplotlib, and IPython Performing parallel and high performance computing Real-life case studies and best practices of scientific computing In Detail In today's world, along with theoretical and experimental work, scientific computing has become an important part of scientific disciplines. Numerical calculations, simulations and computer modeling in this day and age form the vast majority of both experimental and theoretical papers. In the scientific method, replication and reproducibility are two important contributing factors. A complete and concrete scientific result should be reproducible and replicable. Python is suitable for scientific computing. A large community of users, plenty of help and documentation, a large collection of scientific libraries and environments, great performance, and good support makes Python a great choice for scientific computing. At present Python is among the top choices for developing scientific workflow and the book targets existing Python developers to master this domain using Python. The main things to learn in the book are the concept of scientific workflow, managing scientific workflow data and performing computation on this data using Python. The book discusses NumPy, SciPy, SymPy, matplotlib, Pandas and IPython with several example programs. Style and approach This book follows a hands-on approach to explain the complex concepts related to scientific computing. It details various APIs using appropriate examples.
Publisher: Packt Publishing Ltd
ISBN: 1783288833
Category : Computers
Languages : en
Pages : 301
Book Description
A complete guide for Python programmers to master scientific computing using Python APIs and tools About This Book The basics of scientific computing to advanced concepts involving parallel and large scale computation are all covered. Most of the Python APIs and tools used in scientific computing are discussed in detail The concepts are discussed with suitable example programs Who This Book Is For If you are a Python programmer and want to get your hands on scientific computing, this book is for you. The book expects you to have had exposure to various concepts of Python programming. What You Will Learn Fundamentals and components of scientific computing Scientific computing data management Performing numerical computing using NumPy and SciPy Concepts and programming for symbolic computing using SymPy Using the plotting library matplotlib for data visualization Data analysis and visualization using Pandas, matplotlib, and IPython Performing parallel and high performance computing Real-life case studies and best practices of scientific computing In Detail In today's world, along with theoretical and experimental work, scientific computing has become an important part of scientific disciplines. Numerical calculations, simulations and computer modeling in this day and age form the vast majority of both experimental and theoretical papers. In the scientific method, replication and reproducibility are two important contributing factors. A complete and concrete scientific result should be reproducible and replicable. Python is suitable for scientific computing. A large community of users, plenty of help and documentation, a large collection of scientific libraries and environments, great performance, and good support makes Python a great choice for scientific computing. At present Python is among the top choices for developing scientific workflow and the book targets existing Python developers to master this domain using Python. The main things to learn in the book are the concept of scientific workflow, managing scientific workflow data and performing computation on this data using Python. The book discusses NumPy, SciPy, SymPy, matplotlib, Pandas and IPython with several example programs. Style and approach This book follows a hands-on approach to explain the complex concepts related to scientific computing. It details various APIs using appropriate examples.
Bioinformatics with Python Cookbook
Author: Tiago Antao
Publisher: Packt Publishing Ltd
ISBN: 1783558652
Category : Computers
Languages : en
Pages : 306
Book Description
If you are either a computational biologist or a Python programmer, you will probably relate to the expression "explosive growth, exciting times". Python is arguably the main programming language for big data, and the deluge of data in biology, mostly from genomics and proteomics, makes bioinformatics one of the most exciting fields in data science. Using the hands-on recipes in this book, you'll be able to do practical research and analysis in computational biology with Python. We cover modern, next-generation sequencing libraries and explore real-world examples on how to handle real data. The main focus of the book is the practical application of bioinformatics, but we also cover modern programming techniques and frameworks to deal with the ever increasing deluge of bioinformatics data.
Publisher: Packt Publishing Ltd
ISBN: 1783558652
Category : Computers
Languages : en
Pages : 306
Book Description
If you are either a computational biologist or a Python programmer, you will probably relate to the expression "explosive growth, exciting times". Python is arguably the main programming language for big data, and the deluge of data in biology, mostly from genomics and proteomics, makes bioinformatics one of the most exciting fields in data science. Using the hands-on recipes in this book, you'll be able to do practical research and analysis in computational biology with Python. We cover modern, next-generation sequencing libraries and explore real-world examples on how to handle real data. The main focus of the book is the practical application of bioinformatics, but we also cover modern programming techniques and frameworks to deal with the ever increasing deluge of bioinformatics data.