Author: Daniel Lelis Baggio
Publisher: Packt Publishing Ltd
ISBN: 1786466562
Category : Computers
Languages : en
Pages : 244
Book Description
Practical Computer Vision Projects About This Book Updated for OpenCV 3, this book covers new features that will help you unlock the full potential of OpenCV 3 Written by a team of 7 experts, each chapter explores a new aspect of OpenCV to help you make amazing computer-vision aware applications Project-based approach with each chapter being a complete tutorial, showing you how to apply OpenCV to solve complete problems Who This Book Is For This book is for those who have a basic knowledge of OpenCV and are competent C++ programmers. You need to have an understanding of some of the more theoretical/mathematical concepts, as we move quite quickly throughout the book. What You Will Learn Execute basic image processing operations and cartoonify an image Build an OpenCV project natively with Raspberry Pi and cross-compile it for Raspberry Pi.text Extend the natural feature tracking algorithm to support the tracking of multiple image targets on a video Use OpenCV 3's new 3D visualization framework to illustrate the 3D scene geometry Create an application for Automatic Number Plate Recognition (ANPR) using a support vector machine and Artificial Neural Networks Train and predict pattern-recognition algorithms to decide whether an image is a number plate Use POSIT for the six degrees of freedom head pose Train a face recognition database using deep learning and recognize faces from that database In Detail As we become more capable of handling data in every kind, we are becoming more reliant on visual input and what we can do with those self-driving cars, face recognition, and even augmented reality applications and games. This is all powered by Computer Vision. This book will put you straight to work in creating powerful and unique computer vision applications. Each chapter is structured around a central project and deep dives into an important aspect of OpenCV such as facial recognition, image target tracking, making augmented reality applications, the 3D visualization framework, and machine learning. You'll learn how to make AI that can remember and use neural networks to help your applications learn. By the end of the book, you will have created various working prototypes with the projects in the book and will be well versed with the new features of OpenCV3. Style and approach This book takes a project-based approach and helps you learn about the new features by putting them to work by implementing them in your own projects.
Mastering OpenCV 3
Author: Daniel Lelis Baggio
Publisher: Packt Publishing Ltd
ISBN: 1786466562
Category : Computers
Languages : en
Pages : 244
Book Description
Practical Computer Vision Projects About This Book Updated for OpenCV 3, this book covers new features that will help you unlock the full potential of OpenCV 3 Written by a team of 7 experts, each chapter explores a new aspect of OpenCV to help you make amazing computer-vision aware applications Project-based approach with each chapter being a complete tutorial, showing you how to apply OpenCV to solve complete problems Who This Book Is For This book is for those who have a basic knowledge of OpenCV and are competent C++ programmers. You need to have an understanding of some of the more theoretical/mathematical concepts, as we move quite quickly throughout the book. What You Will Learn Execute basic image processing operations and cartoonify an image Build an OpenCV project natively with Raspberry Pi and cross-compile it for Raspberry Pi.text Extend the natural feature tracking algorithm to support the tracking of multiple image targets on a video Use OpenCV 3's new 3D visualization framework to illustrate the 3D scene geometry Create an application for Automatic Number Plate Recognition (ANPR) using a support vector machine and Artificial Neural Networks Train and predict pattern-recognition algorithms to decide whether an image is a number plate Use POSIT for the six degrees of freedom head pose Train a face recognition database using deep learning and recognize faces from that database In Detail As we become more capable of handling data in every kind, we are becoming more reliant on visual input and what we can do with those self-driving cars, face recognition, and even augmented reality applications and games. This is all powered by Computer Vision. This book will put you straight to work in creating powerful and unique computer vision applications. Each chapter is structured around a central project and deep dives into an important aspect of OpenCV such as facial recognition, image target tracking, making augmented reality applications, the 3D visualization framework, and machine learning. You'll learn how to make AI that can remember and use neural networks to help your applications learn. By the end of the book, you will have created various working prototypes with the projects in the book and will be well versed with the new features of OpenCV3. Style and approach This book takes a project-based approach and helps you learn about the new features by putting them to work by implementing them in your own projects.
Publisher: Packt Publishing Ltd
ISBN: 1786466562
Category : Computers
Languages : en
Pages : 244
Book Description
Practical Computer Vision Projects About This Book Updated for OpenCV 3, this book covers new features that will help you unlock the full potential of OpenCV 3 Written by a team of 7 experts, each chapter explores a new aspect of OpenCV to help you make amazing computer-vision aware applications Project-based approach with each chapter being a complete tutorial, showing you how to apply OpenCV to solve complete problems Who This Book Is For This book is for those who have a basic knowledge of OpenCV and are competent C++ programmers. You need to have an understanding of some of the more theoretical/mathematical concepts, as we move quite quickly throughout the book. What You Will Learn Execute basic image processing operations and cartoonify an image Build an OpenCV project natively with Raspberry Pi and cross-compile it for Raspberry Pi.text Extend the natural feature tracking algorithm to support the tracking of multiple image targets on a video Use OpenCV 3's new 3D visualization framework to illustrate the 3D scene geometry Create an application for Automatic Number Plate Recognition (ANPR) using a support vector machine and Artificial Neural Networks Train and predict pattern-recognition algorithms to decide whether an image is a number plate Use POSIT for the six degrees of freedom head pose Train a face recognition database using deep learning and recognize faces from that database In Detail As we become more capable of handling data in every kind, we are becoming more reliant on visual input and what we can do with those self-driving cars, face recognition, and even augmented reality applications and games. This is all powered by Computer Vision. This book will put you straight to work in creating powerful and unique computer vision applications. Each chapter is structured around a central project and deep dives into an important aspect of OpenCV such as facial recognition, image target tracking, making augmented reality applications, the 3D visualization framework, and machine learning. You'll learn how to make AI that can remember and use neural networks to help your applications learn. By the end of the book, you will have created various working prototypes with the projects in the book and will be well versed with the new features of OpenCV3. Style and approach This book takes a project-based approach and helps you learn about the new features by putting them to work by implementing them in your own projects.
Mastering OpenCV 4
Author: Roy Shilkrot
Publisher: Packt Publishing Ltd
ISBN: 1789539269
Category : Computers
Languages : en
Pages : 272
Book Description
Work on practical computer vision projects covering advanced object detector techniques and modern deep learning and machine learning algorithms Key FeaturesLearn about the new features that help unlock the full potential of OpenCV 4Build face detection applications with a cascade classifier using face landmarksCreate an optical character recognition (OCR) model using deep learning and convolutional neural networksBook Description Mastering OpenCV, now in its third edition, targets computer vision engineers taking their first steps toward mastering OpenCV. Keeping the mathematical formulations to a solid but bare minimum, the book delivers complete projects from ideation to running code, targeting current hot topics in computer vision such as face recognition, landmark detection and pose estimation, and number recognition with deep convolutional networks. You’ll learn from experienced OpenCV experts how to implement computer vision products and projects both in academia and industry in a comfortable package. You’ll get acquainted with API functionality and gain insights into design choices in a complete computer vision project. You’ll also go beyond the basics of computer vision to implement solutions for complex image processing projects. By the end of the book, you will have created various working prototypes with the help of projects in the book and be well versed with the new features of OpenCV4. What you will learnBuild real-world computer vision problems with working OpenCV code samplesUncover best practices in engineering and maintaining OpenCV projectsExplore algorithmic design approaches for complex computer vision tasksWork with OpenCV’s most updated API (v4.0.0) through projectsUnderstand 3D scene reconstruction and Structure from Motion (SfM)Study camera calibration and overlay AR using the ArUco ModuleWho this book is for This book is for those who have a basic knowledge of OpenCV and are competent C++ programmers. You need to have an understanding of some of the more theoretical/mathematical concepts, as we move quite quickly throughout the book.
Publisher: Packt Publishing Ltd
ISBN: 1789539269
Category : Computers
Languages : en
Pages : 272
Book Description
Work on practical computer vision projects covering advanced object detector techniques and modern deep learning and machine learning algorithms Key FeaturesLearn about the new features that help unlock the full potential of OpenCV 4Build face detection applications with a cascade classifier using face landmarksCreate an optical character recognition (OCR) model using deep learning and convolutional neural networksBook Description Mastering OpenCV, now in its third edition, targets computer vision engineers taking their first steps toward mastering OpenCV. Keeping the mathematical formulations to a solid but bare minimum, the book delivers complete projects from ideation to running code, targeting current hot topics in computer vision such as face recognition, landmark detection and pose estimation, and number recognition with deep convolutional networks. You’ll learn from experienced OpenCV experts how to implement computer vision products and projects both in academia and industry in a comfortable package. You’ll get acquainted with API functionality and gain insights into design choices in a complete computer vision project. You’ll also go beyond the basics of computer vision to implement solutions for complex image processing projects. By the end of the book, you will have created various working prototypes with the help of projects in the book and be well versed with the new features of OpenCV4. What you will learnBuild real-world computer vision problems with working OpenCV code samplesUncover best practices in engineering and maintaining OpenCV projectsExplore algorithmic design approaches for complex computer vision tasksWork with OpenCV’s most updated API (v4.0.0) through projectsUnderstand 3D scene reconstruction and Structure from Motion (SfM)Study camera calibration and overlay AR using the ArUco ModuleWho this book is for This book is for those who have a basic knowledge of OpenCV and are competent C++ programmers. You need to have an understanding of some of the more theoretical/mathematical concepts, as we move quite quickly throughout the book.
Mastering OpenCV with Practical Computer Vision Projects
Author: Daniel Lélis Baggio
Publisher: Packt Publishing Ltd
ISBN: 1849517835
Category : Computers
Languages : en
Pages : 500
Book Description
Each chapter in the book is an individual project and each project is constructed with step-by-step instructions, clearly explained code, and includes the necessary screenshots. You should have basic OpenCV and C/C++ programming experience before reading this book, as it is aimed at Computer Science graduates, researchers, and computer vision experts widening their expertise.
Publisher: Packt Publishing Ltd
ISBN: 1849517835
Category : Computers
Languages : en
Pages : 500
Book Description
Each chapter in the book is an individual project and each project is constructed with step-by-step instructions, clearly explained code, and includes the necessary screenshots. You should have basic OpenCV and C/C++ programming experience before reading this book, as it is aimed at Computer Science graduates, researchers, and computer vision experts widening their expertise.
Mastering OpenCV 4 with Python
Author: Alberto Fernández Villán
Publisher: Packt Publishing Ltd
ISBN: 1789349753
Category : Computers
Languages : en
Pages : 517
Book Description
Create advanced applications with Python and OpenCV, exploring the potential of facial recognition, machine learning, deep learning, web computing and augmented reality. Key FeaturesDevelop your computer vision skills by mastering algorithms in Open Source Computer Vision 4 (OpenCV 4) and PythonApply machine learning and deep learning techniques with TensorFlow and KerasDiscover the modern design patterns you should avoid when developing efficient computer vision applicationsBook Description OpenCV is considered to be one of the best open source computer vision and machine learning software libraries. It helps developers build complete projects in relation to image processing, motion detection, or image segmentation, among many others. OpenCV for Python enables you to run computer vision algorithms smoothly in real time, combining the best of the OpenCV C++ API and the Python language. In this book, you'll get started by setting up OpenCV and delving into the key concepts of computer vision. You'll then proceed to study more advanced concepts and discover the full potential of OpenCV. The book will also introduce you to the creation of advanced applications using Python and OpenCV, enabling you to develop applications that include facial recognition, target tracking, or augmented reality. Next, you'll learn machine learning techniques and concepts, understand how to apply them in real-world examples, and also explore their benefits, including real-time data production and faster data processing. You'll also discover how to translate the functionality provided by OpenCV into optimized application code projects using Python bindings. Toward the concluding chapters, you'll explore the application of artificial intelligence and deep learning techniques using the popular Python libraries TensorFlow, and Keras. By the end of this book, you'll be able to develop advanced computer vision applications to meet your customers' demands. What you will learnHandle files and images, and explore various image processing techniquesExplore image transformations, including translation, resizing, and croppingGain insights into building histogramsBrush up on contour detection, filtering, and drawingWork with Augmented Reality to build marker-based and markerless applicationsWork with the main machine learning algorithms in OpenCVExplore the deep learning Python libraries and OpenCV deep learning capabilitiesCreate computer vision and deep learning web applicationsWho this book is for This book is designed for computer vision developers, engineers, and researchers who want to develop modern computer vision applications. Basic experience of OpenCV and Python programming is a must.
Publisher: Packt Publishing Ltd
ISBN: 1789349753
Category : Computers
Languages : en
Pages : 517
Book Description
Create advanced applications with Python and OpenCV, exploring the potential of facial recognition, machine learning, deep learning, web computing and augmented reality. Key FeaturesDevelop your computer vision skills by mastering algorithms in Open Source Computer Vision 4 (OpenCV 4) and PythonApply machine learning and deep learning techniques with TensorFlow and KerasDiscover the modern design patterns you should avoid when developing efficient computer vision applicationsBook Description OpenCV is considered to be one of the best open source computer vision and machine learning software libraries. It helps developers build complete projects in relation to image processing, motion detection, or image segmentation, among many others. OpenCV for Python enables you to run computer vision algorithms smoothly in real time, combining the best of the OpenCV C++ API and the Python language. In this book, you'll get started by setting up OpenCV and delving into the key concepts of computer vision. You'll then proceed to study more advanced concepts and discover the full potential of OpenCV. The book will also introduce you to the creation of advanced applications using Python and OpenCV, enabling you to develop applications that include facial recognition, target tracking, or augmented reality. Next, you'll learn machine learning techniques and concepts, understand how to apply them in real-world examples, and also explore their benefits, including real-time data production and faster data processing. You'll also discover how to translate the functionality provided by OpenCV into optimized application code projects using Python bindings. Toward the concluding chapters, you'll explore the application of artificial intelligence and deep learning techniques using the popular Python libraries TensorFlow, and Keras. By the end of this book, you'll be able to develop advanced computer vision applications to meet your customers' demands. What you will learnHandle files and images, and explore various image processing techniquesExplore image transformations, including translation, resizing, and croppingGain insights into building histogramsBrush up on contour detection, filtering, and drawingWork with Augmented Reality to build marker-based and markerless applicationsWork with the main machine learning algorithms in OpenCVExplore the deep learning Python libraries and OpenCV deep learning capabilitiesCreate computer vision and deep learning web applicationsWho this book is for This book is designed for computer vision developers, engineers, and researchers who want to develop modern computer vision applications. Basic experience of OpenCV and Python programming is a must.
Learning OpenCV 3 Computer Vision with Python
Author: Joe Minichino
Publisher: Packt Publishing Ltd
ISBN: 1785289772
Category : Computers
Languages : en
Pages : 266
Book Description
Unleash the power of computer vision with Python using OpenCV About This Book Create impressive applications with OpenCV and Python Familiarize yourself with advanced machine learning concepts Harness the power of computer vision with this easy-to-follow guide Who This Book Is For Intended for novices to the world of OpenCV and computer vision, as well as OpenCV veterans that want to learn about what's new in OpenCV 3, this book is useful as a reference for experts and a training manual for beginners, or for anybody who wants to familiarize themselves with the concepts of object classification and detection in simple and understandable terms. Basic knowledge about Python and programming concepts is required, although the book has an easy learning curve both from a theoretical and coding point of view. What You Will Learn Install and familiarize yourself with OpenCV 3's Python API Grasp the basics of image processing and video analysis Identify and recognize objects in images and videos Detect and recognize faces using OpenCV Train and use your own object classifiers Learn about machine learning concepts in a computer vision context Work with artificial neural networks using OpenCV Develop your own computer vision real-life application In Detail OpenCV 3 is a state-of-the-art computer vision library that allows a great variety of image and video processing operations. Some of the more spectacular and futuristic features such as face recognition or object tracking are easily achievable with OpenCV 3. Learning the basic concepts behind computer vision algorithms, models, and OpenCV's API will enable the development of all sorts of real-world applications, including security and surveillance. Starting with basic image processing operations, the book will take you through to advanced computer vision concepts. Computer vision is a rapidly evolving science whose applications in the real world are exploding, so this book will appeal to computer vision novices as well as experts of the subject wanting to learn the brand new OpenCV 3.0.0. You will build a theoretical foundation of image processing and video analysis, and progress to the concepts of classification through machine learning, acquiring the technical know-how that will allow you to create and use object detectors and classifiers, and even track objects in movies or video camera feeds. Finally, the journey will end in the world of artificial neural networks, along with the development of a hand-written digits recognition application. Style and approach This book is a comprehensive guide to the brand new OpenCV 3 with Python to develop real-life computer vision applications.
Publisher: Packt Publishing Ltd
ISBN: 1785289772
Category : Computers
Languages : en
Pages : 266
Book Description
Unleash the power of computer vision with Python using OpenCV About This Book Create impressive applications with OpenCV and Python Familiarize yourself with advanced machine learning concepts Harness the power of computer vision with this easy-to-follow guide Who This Book Is For Intended for novices to the world of OpenCV and computer vision, as well as OpenCV veterans that want to learn about what's new in OpenCV 3, this book is useful as a reference for experts and a training manual for beginners, or for anybody who wants to familiarize themselves with the concepts of object classification and detection in simple and understandable terms. Basic knowledge about Python and programming concepts is required, although the book has an easy learning curve both from a theoretical and coding point of view. What You Will Learn Install and familiarize yourself with OpenCV 3's Python API Grasp the basics of image processing and video analysis Identify and recognize objects in images and videos Detect and recognize faces using OpenCV Train and use your own object classifiers Learn about machine learning concepts in a computer vision context Work with artificial neural networks using OpenCV Develop your own computer vision real-life application In Detail OpenCV 3 is a state-of-the-art computer vision library that allows a great variety of image and video processing operations. Some of the more spectacular and futuristic features such as face recognition or object tracking are easily achievable with OpenCV 3. Learning the basic concepts behind computer vision algorithms, models, and OpenCV's API will enable the development of all sorts of real-world applications, including security and surveillance. Starting with basic image processing operations, the book will take you through to advanced computer vision concepts. Computer vision is a rapidly evolving science whose applications in the real world are exploding, so this book will appeal to computer vision novices as well as experts of the subject wanting to learn the brand new OpenCV 3.0.0. You will build a theoretical foundation of image processing and video analysis, and progress to the concepts of classification through machine learning, acquiring the technical know-how that will allow you to create and use object detectors and classifiers, and even track objects in movies or video camera feeds. Finally, the journey will end in the world of artificial neural networks, along with the development of a hand-written digits recognition application. Style and approach This book is a comprehensive guide to the brand new OpenCV 3 with Python to develop real-life computer vision applications.
OpenCV 3 Computer Vision with Python Cookbook
Author: Aleksei Spizhevoi
Publisher: Packt Publishing Ltd
ISBN: 1788478754
Category : Computers
Languages : en
Pages : 296
Book Description
OpenCV 3 is a native cross-platform library for computer vision, machine learning, and image processing. OpenCV's convenient high-level APIs hide very powerful internals designed for computational efficiency that can take advantage of multicore and GPU processing. This book will help you tackle increasingly challenging computer vision problems ...
Publisher: Packt Publishing Ltd
ISBN: 1788478754
Category : Computers
Languages : en
Pages : 296
Book Description
OpenCV 3 is a native cross-platform library for computer vision, machine learning, and image processing. OpenCV's convenient high-level APIs hide very powerful internals designed for computational efficiency that can take advantage of multicore and GPU processing. This book will help you tackle increasingly challenging computer vision problems ...
Learning OpenCV
Author: Gary R. Bradski
Publisher:
ISBN: 9787564116293
Category : Computer vision
Languages : zh-CN
Pages : 555
Book Description
本书介绍了计算机视觉,例证了如何迅速建立使计算机能“看”的应用程序,以及如何基于计算机获取的数据作出决策.
Publisher:
ISBN: 9787564116293
Category : Computer vision
Languages : zh-CN
Pages : 555
Book Description
本书介绍了计算机视觉,例证了如何迅速建立使计算机能“看”的应用程序,以及如何基于计算机获取的数据作出决策.
Computer Vision with OpenCV 3 and Qt5
Author: Amin Ahmadi Tazehkandi
Publisher: Packt Publishing Ltd
ISBN: 1788473418
Category : Computers
Languages : en
Pages : 475
Book Description
Blend the power of Qt with OpenCV to build cross-platform computer vision applications Key Features ● Start creating robust applications with the power of OpenCV and Qt combined ● Learn from scratch how to develop cross-platform computer vision applications ● Accentuate your OpenCV applications by developing them with Qt Book Description Developers have been using OpenCV library to develop computer vision applications for a long time. However, they now need a more effective tool to get the job done and in a much better and modern way. Qt is one of the major frameworks available for this task at the moment. This book will teach you to develop applications with the combination of OpenCV 3 and Qt5, and how to create cross-platform computer vision applications. We’ll begin by introducing Qt, its IDE, and its SDK. Next you’ll learn how to use the OpenCV API to integrate both tools, and see how to configure Qt to use OpenCV. You’ll go on to build a full-fledged computer vision application throughout the book. Later, you’ll create a stunning UI application using the Qt widgets technology, where you’ll display the images after they are processed in an efficient way. At the end of the book, you’ll learn how to convert OpenCV Mat to Qt QImage. You’ll also see how to efficiently process images to filter them, transform them, detect or track objects as well as analyze video. You’ll become better at developing OpenCV applications. What you will learn ● Get an introduction to Qt IDE and SDK ● Be introduced to OpenCV and see how to communicate between OpenCV and Qt ● Understand how to create UI using Qt Widgets ● Learn to develop cross-platform applications using OpenCV 3 and Qt 5 ● Explore the multithreaded application development features of Qt5 ● Improve OpenCV 3 application development using Qt5 ● Build, test, and deploy Qt and OpenCV apps, either dynamically or statically ● See Computer Vision technologies such as filtering and transformation of images, detecting and matching objects, template matching, object tracking, video and motion analysis, and much more ● Be introduced to QML and Qt Quick for iOS and Android application development Who this book is for This book is for readers interested in building computer vision applications. Intermediate knowledge of C++ programming is expected. Even though no knowledge of Qt5 and OpenCV 3 is assumed, if you’re familiar with these frameworks, you’ll benefit.
Publisher: Packt Publishing Ltd
ISBN: 1788473418
Category : Computers
Languages : en
Pages : 475
Book Description
Blend the power of Qt with OpenCV to build cross-platform computer vision applications Key Features ● Start creating robust applications with the power of OpenCV and Qt combined ● Learn from scratch how to develop cross-platform computer vision applications ● Accentuate your OpenCV applications by developing them with Qt Book Description Developers have been using OpenCV library to develop computer vision applications for a long time. However, they now need a more effective tool to get the job done and in a much better and modern way. Qt is one of the major frameworks available for this task at the moment. This book will teach you to develop applications with the combination of OpenCV 3 and Qt5, and how to create cross-platform computer vision applications. We’ll begin by introducing Qt, its IDE, and its SDK. Next you’ll learn how to use the OpenCV API to integrate both tools, and see how to configure Qt to use OpenCV. You’ll go on to build a full-fledged computer vision application throughout the book. Later, you’ll create a stunning UI application using the Qt widgets technology, where you’ll display the images after they are processed in an efficient way. At the end of the book, you’ll learn how to convert OpenCV Mat to Qt QImage. You’ll also see how to efficiently process images to filter them, transform them, detect or track objects as well as analyze video. You’ll become better at developing OpenCV applications. What you will learn ● Get an introduction to Qt IDE and SDK ● Be introduced to OpenCV and see how to communicate between OpenCV and Qt ● Understand how to create UI using Qt Widgets ● Learn to develop cross-platform applications using OpenCV 3 and Qt 5 ● Explore the multithreaded application development features of Qt5 ● Improve OpenCV 3 application development using Qt5 ● Build, test, and deploy Qt and OpenCV apps, either dynamically or statically ● See Computer Vision technologies such as filtering and transformation of images, detecting and matching objects, template matching, object tracking, video and motion analysis, and much more ● Be introduced to QML and Qt Quick for iOS and Android application development Who this book is for This book is for readers interested in building computer vision applications. Intermediate knowledge of C++ programming is expected. Even though no knowledge of Qt5 and OpenCV 3 is assumed, if you’re familiar with these frameworks, you’ll benefit.
Learn OpenCV 4 by Building Projects
Author: David Millán Escrivá
Publisher: Packt Publishing Ltd
ISBN: 1789347629
Category : Computers
Languages : en
Pages : 301
Book Description
Explore OpenCV 4 to create visually appealing cross-platform computer vision applications Key FeaturesUnderstand basic OpenCV 4 concepts and algorithmsGrasp advanced OpenCV techniques such as 3D reconstruction, machine learning, and artificial neural networksWork with Tesseract OCR, an open-source library to recognize text in imagesBook Description OpenCV is one of the best open source libraries available, and can help you focus on constructing complete projects on image processing, motion detection, and image segmentation. Whether you’re completely new to computer vision, or have a basic understanding of its concepts, Learn OpenCV 4 by Building Projects – Second edition will be your guide to understanding OpenCV concepts and algorithms through real-world examples and projects. You’ll begin with the installation of OpenCV and the basics of image processing. Then, you’ll cover user interfaces and get deeper into image processing. As you progress through the book, you'll learn complex computer vision algorithms and explore machine learning and face detection. The book then guides you in creating optical flow video analysis and background subtraction in complex scenes. In the concluding chapters, you'll also learn about text segmentation and recognition and understand the basics of the new and improved deep learning module. By the end of this book, you'll be familiar with the basics of Open CV, such as matrix operations, filters, and histograms, and you'll have mastered commonly used computer vision techniques to build OpenCV projects from scratch. What you will learnInstall OpenCV 4 on your operating systemCreate CMake scripts to compile your C++ applicationUnderstand basic image matrix formats and filtersExplore segmentation and feature extraction techniquesRemove backgrounds from static scenes to identify moving objects for surveillanceEmploy various techniques to track objects in a live videoWork with new OpenCV functions for text detection and recognition with TesseractGet acquainted with important deep learning tools for image classificationWho this book is for If you are a software developer with a basic understanding of computer vision and image processing and want to develop interesting computer vision applications with OpenCV, Learn OpenCV 4 by Building Projects for you. Prior knowledge of C++ will help you understand the concepts covered in this book.
Publisher: Packt Publishing Ltd
ISBN: 1789347629
Category : Computers
Languages : en
Pages : 301
Book Description
Explore OpenCV 4 to create visually appealing cross-platform computer vision applications Key FeaturesUnderstand basic OpenCV 4 concepts and algorithmsGrasp advanced OpenCV techniques such as 3D reconstruction, machine learning, and artificial neural networksWork with Tesseract OCR, an open-source library to recognize text in imagesBook Description OpenCV is one of the best open source libraries available, and can help you focus on constructing complete projects on image processing, motion detection, and image segmentation. Whether you’re completely new to computer vision, or have a basic understanding of its concepts, Learn OpenCV 4 by Building Projects – Second edition will be your guide to understanding OpenCV concepts and algorithms through real-world examples and projects. You’ll begin with the installation of OpenCV and the basics of image processing. Then, you’ll cover user interfaces and get deeper into image processing. As you progress through the book, you'll learn complex computer vision algorithms and explore machine learning and face detection. The book then guides you in creating optical flow video analysis and background subtraction in complex scenes. In the concluding chapters, you'll also learn about text segmentation and recognition and understand the basics of the new and improved deep learning module. By the end of this book, you'll be familiar with the basics of Open CV, such as matrix operations, filters, and histograms, and you'll have mastered commonly used computer vision techniques to build OpenCV projects from scratch. What you will learnInstall OpenCV 4 on your operating systemCreate CMake scripts to compile your C++ applicationUnderstand basic image matrix formats and filtersExplore segmentation and feature extraction techniquesRemove backgrounds from static scenes to identify moving objects for surveillanceEmploy various techniques to track objects in a live videoWork with new OpenCV functions for text detection and recognition with TesseractGet acquainted with important deep learning tools for image classificationWho this book is for If you are a software developer with a basic understanding of computer vision and image processing and want to develop interesting computer vision applications with OpenCV, Learn OpenCV 4 by Building Projects for you. Prior knowledge of C++ will help you understand the concepts covered in this book.
Learning OpenCV 4 Computer Vision with Python 3
Author: Joseph Howse
Publisher: Packt Publishing Ltd
ISBN: 1789530644
Category : Computers
Languages : en
Pages : 364
Book Description
Updated for OpenCV 4 and Python 3, this book covers the latest on depth cameras, 3D tracking, augmented reality, and deep neural networks, helping you solve real-world computer vision problems with practical code Key Features Build powerful computer vision applications in concise code with OpenCV 4 and Python 3 Learn the fundamental concepts of image processing, object classification, and 2D and 3D tracking Train, use, and understand machine learning models such as Support Vector Machines (SVMs) and neural networks Book Description Computer vision is a rapidly evolving science, encompassing diverse applications and techniques. This book will not only help those who are getting started with computer vision but also experts in the domain. You'll be able to put theory into practice by building apps with OpenCV 4 and Python 3. You'll start by understanding OpenCV 4 and how to set it up with Python 3 on various platforms. Next, you'll learn how to perform basic operations such as reading, writing, manipulating, and displaying still images, videos, and camera feeds. From taking you through image processing, video analysis, and depth estimation and segmentation, to helping you gain practice by building a GUI app, this book ensures you'll have opportunities for hands-on activities. Next, you'll tackle two popular challenges: face detection and face recognition. You'll also learn about object classification and machine learning concepts, which will enable you to create and use object detectors and classifiers, and even track objects in movies or video camera feed. Later, you'll develop your skills in 3D tracking and augmented reality. Finally, you'll cover ANNs and DNNs, learning how to develop apps for recognizing handwritten digits and classifying a person's gender and age. By the end of this book, you'll have the skills you need to execute real-world computer vision projects. What you will learn Install and familiarize yourself with OpenCV 4's Python 3 bindings Understand image processing and video analysis basics Use a depth camera to distinguish foreground and background regions Detect and identify objects, and track their motion in videos Train and use your own models to match images and classify objects Detect and recognize faces, and classify their gender and age Build an augmented reality application to track an image in 3D Work with machine learning models, including SVMs, artificial neural networks (ANNs), and deep neural networks (DNNs) Who this book is for If you are interested in learning computer vision, machine learning, and OpenCV in the context of practical real-world applications, then this book is for you. This OpenCV book will also be useful for anyone getting started with computer vision as well as experts who want to stay up-to-date with OpenCV 4 and Python 3. Although no prior knowledge of image processing, computer vision or machine learning is required, familiarity with basic Python programming is a must.
Publisher: Packt Publishing Ltd
ISBN: 1789530644
Category : Computers
Languages : en
Pages : 364
Book Description
Updated for OpenCV 4 and Python 3, this book covers the latest on depth cameras, 3D tracking, augmented reality, and deep neural networks, helping you solve real-world computer vision problems with practical code Key Features Build powerful computer vision applications in concise code with OpenCV 4 and Python 3 Learn the fundamental concepts of image processing, object classification, and 2D and 3D tracking Train, use, and understand machine learning models such as Support Vector Machines (SVMs) and neural networks Book Description Computer vision is a rapidly evolving science, encompassing diverse applications and techniques. This book will not only help those who are getting started with computer vision but also experts in the domain. You'll be able to put theory into practice by building apps with OpenCV 4 and Python 3. You'll start by understanding OpenCV 4 and how to set it up with Python 3 on various platforms. Next, you'll learn how to perform basic operations such as reading, writing, manipulating, and displaying still images, videos, and camera feeds. From taking you through image processing, video analysis, and depth estimation and segmentation, to helping you gain practice by building a GUI app, this book ensures you'll have opportunities for hands-on activities. Next, you'll tackle two popular challenges: face detection and face recognition. You'll also learn about object classification and machine learning concepts, which will enable you to create and use object detectors and classifiers, and even track objects in movies or video camera feed. Later, you'll develop your skills in 3D tracking and augmented reality. Finally, you'll cover ANNs and DNNs, learning how to develop apps for recognizing handwritten digits and classifying a person's gender and age. By the end of this book, you'll have the skills you need to execute real-world computer vision projects. What you will learn Install and familiarize yourself with OpenCV 4's Python 3 bindings Understand image processing and video analysis basics Use a depth camera to distinguish foreground and background regions Detect and identify objects, and track their motion in videos Train and use your own models to match images and classify objects Detect and recognize faces, and classify their gender and age Build an augmented reality application to track an image in 3D Work with machine learning models, including SVMs, artificial neural networks (ANNs), and deep neural networks (DNNs) Who this book is for If you are interested in learning computer vision, machine learning, and OpenCV in the context of practical real-world applications, then this book is for you. This OpenCV book will also be useful for anyone getting started with computer vision as well as experts who want to stay up-to-date with OpenCV 4 and Python 3. Although no prior knowledge of image processing, computer vision or machine learning is required, familiarity with basic Python programming is a must.