Author: Jamie Dixon
Publisher: Packt Publishing Ltd
ISBN: 1785881191
Category : Computers
Languages : en
Pages : 358
Book Description
Master the art of machine learning with .NET and gain insight into real-world applications About This Book Based on .NET framework 4.6.1, includes examples on ASP.NET Core 1.0 Set up your business application to start using machine learning techniques Familiarize the user with some of the more common .NET libraries for machine learning Implement several common machine learning techniques Evaluate, optimize and adjust machine learning models Who This Book Is For This book is targeted at .Net developers who want to build complex machine learning systems. Some basic understanding of data science is required. What You Will Learn Write your own machine learning applications and experiments using the latest .NET framework, including .NET Core 1.0 Set up your business application to start using machine learning. Accurately predict the future using regressions. Discover hidden patterns using decision trees. Acquire, prepare, and combine datasets to drive insights. Optimize business throughput using Bayes Classifier. Discover (more) hidden patterns using KNN and Naive Bayes. Discover (even more) hidden patterns using K-Means and PCA. Use Neural Networks to improve business decision making while using the latest ASP.NET technologies. Explore “Big Data”, distributed computing, and how to deploy machine learning models to IoT devices – making machines self-learning and adapting Along the way, learn about Open Data, Bing maps, and MBrace In Detail .Net is one of the widely used platforms for developing applications. With the meteoric rise of Machine learning, developers are now keen on finding out how can they make their .Net applications smarter. Also, .NET developers are interested into moving into the world of devices and how to apply machine learning techniques to, well, machines. This book is packed with real-world examples to easily use machine learning techniques in your business applications. You will begin with introduction to F# and prepare yourselves for machine learning using .NET framework. You will be writing a simple linear regression model using an example which predicts sales of a product. Forming a base with the regression model, you will start using machine learning libraries available in .NET framework such as Math.NET, Numl.NET and Accord.NET with the help of a sample application. You will then move on to writing multiple linear regressions and logistic regressions. You will learn what is open data and the awesomeness of type providers. Next, you are going to address some of the issues that we have been glossing over so far and take a deep dive into obtaining, cleaning, and organizing our data. You will compare the utility of building a KNN and Naive Bayes model to achieve best possible results. Implementation of Kmeans and PCA using Accord.NET and Numl.NET libraries is covered with the help of an example application. We will then look at many of issues confronting creating real-world machine learning models like overfitting and how to combat them using confusion matrixes, scaling, normalization, and feature selection. You will now enter into the world of Neural Networks and move your line of business application to a hybrid scientific application. After you have covered all the above machine learning models, you will see how to deal with very large datasets using MBrace and how to deploy machine learning models to Internet of Thing (IoT) devices so that the machine can learn and adapt on the fly Style and approach This book will guide you in learning everything about how to tackle the flood of data being encountered these days in your .NET applications with the help of popular machine learning libraries offered by the .NET framework.
Mastering .NET Machine Learning
Author: Jamie Dixon
Publisher: Packt Publishing Ltd
ISBN: 1785881191
Category : Computers
Languages : en
Pages : 358
Book Description
Master the art of machine learning with .NET and gain insight into real-world applications About This Book Based on .NET framework 4.6.1, includes examples on ASP.NET Core 1.0 Set up your business application to start using machine learning techniques Familiarize the user with some of the more common .NET libraries for machine learning Implement several common machine learning techniques Evaluate, optimize and adjust machine learning models Who This Book Is For This book is targeted at .Net developers who want to build complex machine learning systems. Some basic understanding of data science is required. What You Will Learn Write your own machine learning applications and experiments using the latest .NET framework, including .NET Core 1.0 Set up your business application to start using machine learning. Accurately predict the future using regressions. Discover hidden patterns using decision trees. Acquire, prepare, and combine datasets to drive insights. Optimize business throughput using Bayes Classifier. Discover (more) hidden patterns using KNN and Naive Bayes. Discover (even more) hidden patterns using K-Means and PCA. Use Neural Networks to improve business decision making while using the latest ASP.NET technologies. Explore “Big Data”, distributed computing, and how to deploy machine learning models to IoT devices – making machines self-learning and adapting Along the way, learn about Open Data, Bing maps, and MBrace In Detail .Net is one of the widely used platforms for developing applications. With the meteoric rise of Machine learning, developers are now keen on finding out how can they make their .Net applications smarter. Also, .NET developers are interested into moving into the world of devices and how to apply machine learning techniques to, well, machines. This book is packed with real-world examples to easily use machine learning techniques in your business applications. You will begin with introduction to F# and prepare yourselves for machine learning using .NET framework. You will be writing a simple linear regression model using an example which predicts sales of a product. Forming a base with the regression model, you will start using machine learning libraries available in .NET framework such as Math.NET, Numl.NET and Accord.NET with the help of a sample application. You will then move on to writing multiple linear regressions and logistic regressions. You will learn what is open data and the awesomeness of type providers. Next, you are going to address some of the issues that we have been glossing over so far and take a deep dive into obtaining, cleaning, and organizing our data. You will compare the utility of building a KNN and Naive Bayes model to achieve best possible results. Implementation of Kmeans and PCA using Accord.NET and Numl.NET libraries is covered with the help of an example application. We will then look at many of issues confronting creating real-world machine learning models like overfitting and how to combat them using confusion matrixes, scaling, normalization, and feature selection. You will now enter into the world of Neural Networks and move your line of business application to a hybrid scientific application. After you have covered all the above machine learning models, you will see how to deal with very large datasets using MBrace and how to deploy machine learning models to Internet of Thing (IoT) devices so that the machine can learn and adapt on the fly Style and approach This book will guide you in learning everything about how to tackle the flood of data being encountered these days in your .NET applications with the help of popular machine learning libraries offered by the .NET framework.
Publisher: Packt Publishing Ltd
ISBN: 1785881191
Category : Computers
Languages : en
Pages : 358
Book Description
Master the art of machine learning with .NET and gain insight into real-world applications About This Book Based on .NET framework 4.6.1, includes examples on ASP.NET Core 1.0 Set up your business application to start using machine learning techniques Familiarize the user with some of the more common .NET libraries for machine learning Implement several common machine learning techniques Evaluate, optimize and adjust machine learning models Who This Book Is For This book is targeted at .Net developers who want to build complex machine learning systems. Some basic understanding of data science is required. What You Will Learn Write your own machine learning applications and experiments using the latest .NET framework, including .NET Core 1.0 Set up your business application to start using machine learning. Accurately predict the future using regressions. Discover hidden patterns using decision trees. Acquire, prepare, and combine datasets to drive insights. Optimize business throughput using Bayes Classifier. Discover (more) hidden patterns using KNN and Naive Bayes. Discover (even more) hidden patterns using K-Means and PCA. Use Neural Networks to improve business decision making while using the latest ASP.NET technologies. Explore “Big Data”, distributed computing, and how to deploy machine learning models to IoT devices – making machines self-learning and adapting Along the way, learn about Open Data, Bing maps, and MBrace In Detail .Net is one of the widely used platforms for developing applications. With the meteoric rise of Machine learning, developers are now keen on finding out how can they make their .Net applications smarter. Also, .NET developers are interested into moving into the world of devices and how to apply machine learning techniques to, well, machines. This book is packed with real-world examples to easily use machine learning techniques in your business applications. You will begin with introduction to F# and prepare yourselves for machine learning using .NET framework. You will be writing a simple linear regression model using an example which predicts sales of a product. Forming a base with the regression model, you will start using machine learning libraries available in .NET framework such as Math.NET, Numl.NET and Accord.NET with the help of a sample application. You will then move on to writing multiple linear regressions and logistic regressions. You will learn what is open data and the awesomeness of type providers. Next, you are going to address some of the issues that we have been glossing over so far and take a deep dive into obtaining, cleaning, and organizing our data. You will compare the utility of building a KNN and Naive Bayes model to achieve best possible results. Implementation of Kmeans and PCA using Accord.NET and Numl.NET libraries is covered with the help of an example application. We will then look at many of issues confronting creating real-world machine learning models like overfitting and how to combat them using confusion matrixes, scaling, normalization, and feature selection. You will now enter into the world of Neural Networks and move your line of business application to a hybrid scientific application. After you have covered all the above machine learning models, you will see how to deal with very large datasets using MBrace and how to deploy machine learning models to Internet of Thing (IoT) devices so that the machine can learn and adapt on the fly Style and approach This book will guide you in learning everything about how to tackle the flood of data being encountered these days in your .NET applications with the help of popular machine learning libraries offered by the .NET framework.
Deep Learning with C#, .Net and Kelp.Net
Author: Cole Matt R.
Publisher: BPB Publications
ISBN: 9389423740
Category : Computers
Languages : en
Pages : 388
Book Description
Get hands on with Kelp.Net, Microsoft's latest Deep Learning frameworkKey features Deep Learning Basics The ultimate Kelp.Net reference guide Develop state of the art deep learning applications C# deep learning code Develop advanced deep learning models with minimal code Develop your own advanced deep learning models Loading and Saving Deep Learning Models Comprehensive Kelp.Net reference Sample Deep Learning Models and Tests penCL Reference Easily add deep learning to your applications Many sample models and tests Intuitive and user friendly Description Deep Learning with Kelp.Net is the ultimate reference for C# .Net developers who are passionate about deep learning. Readers will learn all the skills necessary to develop powerful, scalable and flexible deep learning models from a fluid and easy to use API. Upon completing the book the reader will have all the tools necessary to add powerful deep learning capabilities to their new or existing applications.What will you learn In-depth knowledge of Kelp.Net How to develop deep learning models C# deep learning programming Open-Computing Language (OpenCL) Loading and saving deep learning models How to develop and use activation functions How to test deep learning modelsWho this book is for This book targets C# .Net developers who are passionate about deep learning yet want to do so from an easy and intuitive API.Table of contents1. Introduction2. ML/DL Terms and Concepts3. Deep Instrumentation4. Kelp.Net Reference5. Loading and Saving Models6. Model Testing and Training7. Sample Deep Learning Tests8. Creating Your Own Deep Learning Tests9. Appendix A: Evaluation Metrics10. Appendix B: OpenCL About the authorMatt R. Cole is a seasoned developer and published author with over 30 years' experience in Microsoft Windows, C, C++, C# and .Net. Matt is the owner of Evolved AI Solutions, a premier provider of advanced Machine Learning/Bio-AI technologies. Matt developed the first enterprise grade MicroService framework written completely in C# and .Net, which is used in production by a major hedge fund in NYC. Matt also developed the first Bio Artificial Intelligence framework which completely integrates mirror and canonical neurons. He continues to push the limits of Machine Learning, Biological Artificial Intelligence, Deep Learning and MicroServices. In his spare time Matt loves to continue his education and contribute to open source efforts such as Kelp.Net. His Website: www.evolvedaisolutions.comHis LinkedIn Profile: https://www.linkedin.com/in/evolvedai/His Blog: https://evolvedaisolutions.com/blog.html
Publisher: BPB Publications
ISBN: 9389423740
Category : Computers
Languages : en
Pages : 388
Book Description
Get hands on with Kelp.Net, Microsoft's latest Deep Learning frameworkKey features Deep Learning Basics The ultimate Kelp.Net reference guide Develop state of the art deep learning applications C# deep learning code Develop advanced deep learning models with minimal code Develop your own advanced deep learning models Loading and Saving Deep Learning Models Comprehensive Kelp.Net reference Sample Deep Learning Models and Tests penCL Reference Easily add deep learning to your applications Many sample models and tests Intuitive and user friendly Description Deep Learning with Kelp.Net is the ultimate reference for C# .Net developers who are passionate about deep learning. Readers will learn all the skills necessary to develop powerful, scalable and flexible deep learning models from a fluid and easy to use API. Upon completing the book the reader will have all the tools necessary to add powerful deep learning capabilities to their new or existing applications.What will you learn In-depth knowledge of Kelp.Net How to develop deep learning models C# deep learning programming Open-Computing Language (OpenCL) Loading and saving deep learning models How to develop and use activation functions How to test deep learning modelsWho this book is for This book targets C# .Net developers who are passionate about deep learning yet want to do so from an easy and intuitive API.Table of contents1. Introduction2. ML/DL Terms and Concepts3. Deep Instrumentation4. Kelp.Net Reference5. Loading and Saving Models6. Model Testing and Training7. Sample Deep Learning Tests8. Creating Your Own Deep Learning Tests9. Appendix A: Evaluation Metrics10. Appendix B: OpenCL About the authorMatt R. Cole is a seasoned developer and published author with over 30 years' experience in Microsoft Windows, C, C++, C# and .Net. Matt is the owner of Evolved AI Solutions, a premier provider of advanced Machine Learning/Bio-AI technologies. Matt developed the first enterprise grade MicroService framework written completely in C# and .Net, which is used in production by a major hedge fund in NYC. Matt also developed the first Bio Artificial Intelligence framework which completely integrates mirror and canonical neurons. He continues to push the limits of Machine Learning, Biological Artificial Intelligence, Deep Learning and MicroServices. In his spare time Matt loves to continue his education and contribute to open source efforts such as Kelp.Net. His Website: www.evolvedaisolutions.comHis LinkedIn Profile: https://www.linkedin.com/in/evolvedai/His Blog: https://evolvedaisolutions.com/blog.html
Mastering Machine Learning with scikit-learn
Author: Gavin Hackeling
Publisher: Packt Publishing Ltd
ISBN: 1788298497
Category : Computers
Languages : en
Pages : 249
Book Description
Use scikit-learn to apply machine learning to real-world problems About This Book Master popular machine learning models including k-nearest neighbors, random forests, logistic regression, k-means, naive Bayes, and artificial neural networks Learn how to build and evaluate performance of efficient models using scikit-learn Practical guide to master your basics and learn from real life applications of machine learning Who This Book Is For This book is intended for software engineers who want to understand how common machine learning algorithms work and develop an intuition for how to use them, and for data scientists who want to learn about the scikit-learn API. Familiarity with machine learning fundamentals and Python are helpful, but not required. What You Will Learn Review fundamental concepts such as bias and variance Extract features from categorical variables, text, and images Predict the values of continuous variables using linear regression and K Nearest Neighbors Classify documents and images using logistic regression and support vector machines Create ensembles of estimators using bagging and boosting techniques Discover hidden structures in data using K-Means clustering Evaluate the performance of machine learning systems in common tasks In Detail Machine learning is the buzzword bringing computer science and statistics together to build smart and efficient models. Using powerful algorithms and techniques offered by machine learning you can automate any analytical model. This book examines a variety of machine learning models including popular machine learning algorithms such as k-nearest neighbors, logistic regression, naive Bayes, k-means, decision trees, and artificial neural networks. It discusses data preprocessing, hyperparameter optimization, and ensemble methods. You will build systems that classify documents, recognize images, detect ads, and more. You will learn to use scikit-learn's API to extract features from categorical variables, text and images; evaluate model performance, and develop an intuition for how to improve your model's performance. By the end of this book, you will master all required concepts of scikit-learn to build efficient models at work to carry out advanced tasks with the practical approach. Style and approach This book is motivated by the belief that you do not understand something until you can describe it simply. Work through toy problems to develop your understanding of the learning algorithms and models, then apply your learnings to real-life problems.
Publisher: Packt Publishing Ltd
ISBN: 1788298497
Category : Computers
Languages : en
Pages : 249
Book Description
Use scikit-learn to apply machine learning to real-world problems About This Book Master popular machine learning models including k-nearest neighbors, random forests, logistic regression, k-means, naive Bayes, and artificial neural networks Learn how to build and evaluate performance of efficient models using scikit-learn Practical guide to master your basics and learn from real life applications of machine learning Who This Book Is For This book is intended for software engineers who want to understand how common machine learning algorithms work and develop an intuition for how to use them, and for data scientists who want to learn about the scikit-learn API. Familiarity with machine learning fundamentals and Python are helpful, but not required. What You Will Learn Review fundamental concepts such as bias and variance Extract features from categorical variables, text, and images Predict the values of continuous variables using linear regression and K Nearest Neighbors Classify documents and images using logistic regression and support vector machines Create ensembles of estimators using bagging and boosting techniques Discover hidden structures in data using K-Means clustering Evaluate the performance of machine learning systems in common tasks In Detail Machine learning is the buzzword bringing computer science and statistics together to build smart and efficient models. Using powerful algorithms and techniques offered by machine learning you can automate any analytical model. This book examines a variety of machine learning models including popular machine learning algorithms such as k-nearest neighbors, logistic regression, naive Bayes, k-means, decision trees, and artificial neural networks. It discusses data preprocessing, hyperparameter optimization, and ensemble methods. You will build systems that classify documents, recognize images, detect ads, and more. You will learn to use scikit-learn's API to extract features from categorical variables, text and images; evaluate model performance, and develop an intuition for how to improve your model's performance. By the end of this book, you will master all required concepts of scikit-learn to build efficient models at work to carry out advanced tasks with the practical approach. Style and approach This book is motivated by the belief that you do not understand something until you can describe it simply. Work through toy problems to develop your understanding of the learning algorithms and models, then apply your learnings to real-life problems.
Mastering Machine Learning on AWS
Author: Dr. Saket S.R. Mengle
Publisher: Packt Publishing Ltd
ISBN: 1789347505
Category : Computers
Languages : en
Pages : 293
Book Description
Gain expertise in ML techniques with AWS to create interactive apps using SageMaker, Apache Spark, and TensorFlow. Key FeaturesBuild machine learning apps on Amazon Web Services (AWS) using SageMaker, Apache Spark and TensorFlowLearn model optimization, and understand how to scale your models using simple and secure APIsDevelop, train, tune and deploy neural network models to accelerate model performance in the cloudBook Description AWS is constantly driving new innovations that empower data scientists to explore a variety of machine learning (ML) cloud services. This book is your comprehensive reference for learning and implementing advanced ML algorithms in AWS cloud. As you go through the chapters, you’ll gain insights into how these algorithms can be trained, tuned and deployed in AWS using Apache Spark on Elastic Map Reduce (EMR), SageMaker, and TensorFlow. While you focus on algorithms such as XGBoost, linear models, factorization machines, and deep nets, the book will also provide you with an overview of AWS as well as detailed practical applications that will help you solve real-world problems. Every practical application includes a series of companion notebooks with all the necessary code to run on AWS. In the next few chapters, you will learn to use SageMaker and EMR Notebooks to perform a range of tasks, right from smart analytics, and predictive modeling, through to sentiment analysis. By the end of this book, you will be equipped with the skills you need to effectively handle machine learning projects and implement and evaluate algorithms on AWS. What you will learnManage AI workflows by using AWS cloud to deploy services that feed smart data productsUse SageMaker services to create recommendation modelsScale model training and deployment using Apache Spark on EMRUnderstand how to cluster big data through EMR and seamlessly integrate it with SageMakerBuild deep learning models on AWS using TensorFlow and deploy them as servicesEnhance your apps by combining Apache Spark and Amazon SageMakerWho this book is for This book is for data scientists, machine learning developers, deep learning enthusiasts and AWS users who want to build advanced models and smart applications on the cloud using AWS and its integration services. Some understanding of machine learning concepts, Python programming and AWS will be beneficial.
Publisher: Packt Publishing Ltd
ISBN: 1789347505
Category : Computers
Languages : en
Pages : 293
Book Description
Gain expertise in ML techniques with AWS to create interactive apps using SageMaker, Apache Spark, and TensorFlow. Key FeaturesBuild machine learning apps on Amazon Web Services (AWS) using SageMaker, Apache Spark and TensorFlowLearn model optimization, and understand how to scale your models using simple and secure APIsDevelop, train, tune and deploy neural network models to accelerate model performance in the cloudBook Description AWS is constantly driving new innovations that empower data scientists to explore a variety of machine learning (ML) cloud services. This book is your comprehensive reference for learning and implementing advanced ML algorithms in AWS cloud. As you go through the chapters, you’ll gain insights into how these algorithms can be trained, tuned and deployed in AWS using Apache Spark on Elastic Map Reduce (EMR), SageMaker, and TensorFlow. While you focus on algorithms such as XGBoost, linear models, factorization machines, and deep nets, the book will also provide you with an overview of AWS as well as detailed practical applications that will help you solve real-world problems. Every practical application includes a series of companion notebooks with all the necessary code to run on AWS. In the next few chapters, you will learn to use SageMaker and EMR Notebooks to perform a range of tasks, right from smart analytics, and predictive modeling, through to sentiment analysis. By the end of this book, you will be equipped with the skills you need to effectively handle machine learning projects and implement and evaluate algorithms on AWS. What you will learnManage AI workflows by using AWS cloud to deploy services that feed smart data productsUse SageMaker services to create recommendation modelsScale model training and deployment using Apache Spark on EMRUnderstand how to cluster big data through EMR and seamlessly integrate it with SageMakerBuild deep learning models on AWS using TensorFlow and deploy them as servicesEnhance your apps by combining Apache Spark and Amazon SageMakerWho this book is for This book is for data scientists, machine learning developers, deep learning enthusiasts and AWS users who want to build advanced models and smart applications on the cloud using AWS and its integration services. Some understanding of machine learning concepts, Python programming and AWS will be beneficial.
Mastering Visual Basic .NET
Author: Evangelos Petroutsos
Publisher: John Wiley & Sons
ISBN: 0782152341
Category : Computers
Languages : en
Pages : 1112
Book Description
VB Programmers: Get in Step with .NET With the introduction of Visual Basic .NET, VB transcends its traditional second-class status to become a full-fledged citizen of the object-oriented programming, letting you access the full power of the Windows platform for the first time. Written bythe author of the best-selling Mastering Visual Basic 6 this all-new edition is the resource you need to make a successful transition to .NET. Comprising in-depth explanations, practical examples, and handy reference information, its coverage includes: Mastering the new Windows Forms Designer and controls Building dynamic forms Using powerful Framework classes such as ArrayLists and HashTables Persisting objects to disk files Handling graphics and printing Achieving robustness via structured exception handling and debugging Developing your own classes and extending existing ones via inheritance Building custom Windows controls Building menus and list controls with custom-drawn items Using ADO.NET to build disconnected, distributed applications Using SQL queries and stored procedures with ADO.NET Facilitating database programming with the visual database tools Building web applications with ASP.NET and the rich web controls Designing web applications to access databases Using the DataGrid and DataList web controls Building XML web services to use with Windows and web applications Special topics like the Multiple Document Interface and powerful recursive programming techniques Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file.
Publisher: John Wiley & Sons
ISBN: 0782152341
Category : Computers
Languages : en
Pages : 1112
Book Description
VB Programmers: Get in Step with .NET With the introduction of Visual Basic .NET, VB transcends its traditional second-class status to become a full-fledged citizen of the object-oriented programming, letting you access the full power of the Windows platform for the first time. Written bythe author of the best-selling Mastering Visual Basic 6 this all-new edition is the resource you need to make a successful transition to .NET. Comprising in-depth explanations, practical examples, and handy reference information, its coverage includes: Mastering the new Windows Forms Designer and controls Building dynamic forms Using powerful Framework classes such as ArrayLists and HashTables Persisting objects to disk files Handling graphics and printing Achieving robustness via structured exception handling and debugging Developing your own classes and extending existing ones via inheritance Building custom Windows controls Building menus and list controls with custom-drawn items Using ADO.NET to build disconnected, distributed applications Using SQL queries and stored procedures with ADO.NET Facilitating database programming with the visual database tools Building web applications with ASP.NET and the rich web controls Designing web applications to access databases Using the DataGrid and DataList web controls Building XML web services to use with Windows and web applications Special topics like the Multiple Document Interface and powerful recursive programming techniques Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file.
Machine Learning
Author: Jason Bell
Publisher: John Wiley & Sons
ISBN: 1119642191
Category : Mathematics
Languages : en
Pages : 497
Book Description
Dig deep into the data with a hands-on guide to machine learning with updated examples and more! Machine Learning: Hands-On for Developers and Technical Professionals provides hands-on instruction and fully-coded working examples for the most common machine learning techniques used by developers and technical professionals. The book contains a breakdown of each ML variant, explaining how it works and how it is used within certain industries, allowing readers to incorporate the presented techniques into their own work as they follow along. A core tenant of machine learning is a strong focus on data preparation, and a full exploration of the various types of learning algorithms illustrates how the proper tools can help any developer extract information and insights from existing data. The book includes a full complement of Instructor's Materials to facilitate use in the classroom, making this resource useful for students and as a professional reference. At its core, machine learning is a mathematical, algorithm-based technology that forms the basis of historical data mining and modern big data science. Scientific analysis of big data requires a working knowledge of machine learning, which forms predictions based on known properties learned from training data. Machine Learning is an accessible, comprehensive guide for the non-mathematician, providing clear guidance that allows readers to: Learn the languages of machine learning including Hadoop, Mahout, and Weka Understand decision trees, Bayesian networks, and artificial neural networks Implement Association Rule, Real Time, and Batch learning Develop a strategic plan for safe, effective, and efficient machine learning By learning to construct a system that can learn from data, readers can increase their utility across industries. Machine learning sits at the core of deep dive data analysis and visualization, which is increasingly in demand as companies discover the goldmine hiding in their existing data. For the tech professional involved in data science, Machine Learning: Hands-On for Developers and Technical Professionals provides the skills and techniques required to dig deeper.
Publisher: John Wiley & Sons
ISBN: 1119642191
Category : Mathematics
Languages : en
Pages : 497
Book Description
Dig deep into the data with a hands-on guide to machine learning with updated examples and more! Machine Learning: Hands-On for Developers and Technical Professionals provides hands-on instruction and fully-coded working examples for the most common machine learning techniques used by developers and technical professionals. The book contains a breakdown of each ML variant, explaining how it works and how it is used within certain industries, allowing readers to incorporate the presented techniques into their own work as they follow along. A core tenant of machine learning is a strong focus on data preparation, and a full exploration of the various types of learning algorithms illustrates how the proper tools can help any developer extract information and insights from existing data. The book includes a full complement of Instructor's Materials to facilitate use in the classroom, making this resource useful for students and as a professional reference. At its core, machine learning is a mathematical, algorithm-based technology that forms the basis of historical data mining and modern big data science. Scientific analysis of big data requires a working knowledge of machine learning, which forms predictions based on known properties learned from training data. Machine Learning is an accessible, comprehensive guide for the non-mathematician, providing clear guidance that allows readers to: Learn the languages of machine learning including Hadoop, Mahout, and Weka Understand decision trees, Bayesian networks, and artificial neural networks Implement Association Rule, Real Time, and Batch learning Develop a strategic plan for safe, effective, and efficient machine learning By learning to construct a system that can learn from data, readers can increase their utility across industries. Machine learning sits at the core of deep dive data analysis and visualization, which is increasingly in demand as companies discover the goldmine hiding in their existing data. For the tech professional involved in data science, Machine Learning: Hands-On for Developers and Technical Professionals provides the skills and techniques required to dig deeper.
Mastering Machine Learning with R
Author: Cory Lesmeister
Publisher: Packt Publishing Ltd
ISBN: 1787284484
Category : Computers
Languages : en
Pages : 410
Book Description
Master machine learning techniques with R to deliver insights in complex projects About This Book Understand and apply machine learning methods using an extensive set of R packages such as XGBOOST Understand the benefits and potential pitfalls of using machine learning methods such as Multi-Class Classification and Unsupervised Learning Implement advanced concepts in machine learning with this example-rich guide Who This Book Is For This book is for data science professionals, data analysts, or anyone with a working knowledge of machine learning, with R who now want to take their skills to the next level and become an expert in the field. What You Will Learn Gain deep insights into the application of machine learning tools in the industry Manipulate data in R efficiently to prepare it for analysis Master the skill of recognizing techniques for effective visualization of data Understand why and how to create test and training data sets for analysis Master fundamental learning methods such as linear and logistic regression Comprehend advanced learning methods such as support vector machines Learn how to use R in a cloud service such as Amazon In Detail This book will teach you advanced techniques in machine learning with the latest code in R 3.3.2. You will delve into statistical learning theory and supervised learning; design efficient algorithms; learn about creating Recommendation Engines; use multi-class classification and deep learning; and more. You will explore, in depth, topics such as data mining, classification, clustering, regression, predictive modeling, anomaly detection, boosted trees with XGBOOST, and more. More than just knowing the outcome, you'll understand how these concepts work and what they do. With a slow learning curve on topics such as neural networks, you will explore deep learning, and more. By the end of this book, you will be able to perform machine learning with R in the cloud using AWS in various scenarios with different datasets. Style and approach The book delivers practical and real-world solutions to problems and a variety of tasks such as complex recommendation systems. By the end of this book, you will have gained expertise in performing R machine learning and will be able to build complex machine learning projects using R and its packages.
Publisher: Packt Publishing Ltd
ISBN: 1787284484
Category : Computers
Languages : en
Pages : 410
Book Description
Master machine learning techniques with R to deliver insights in complex projects About This Book Understand and apply machine learning methods using an extensive set of R packages such as XGBOOST Understand the benefits and potential pitfalls of using machine learning methods such as Multi-Class Classification and Unsupervised Learning Implement advanced concepts in machine learning with this example-rich guide Who This Book Is For This book is for data science professionals, data analysts, or anyone with a working knowledge of machine learning, with R who now want to take their skills to the next level and become an expert in the field. What You Will Learn Gain deep insights into the application of machine learning tools in the industry Manipulate data in R efficiently to prepare it for analysis Master the skill of recognizing techniques for effective visualization of data Understand why and how to create test and training data sets for analysis Master fundamental learning methods such as linear and logistic regression Comprehend advanced learning methods such as support vector machines Learn how to use R in a cloud service such as Amazon In Detail This book will teach you advanced techniques in machine learning with the latest code in R 3.3.2. You will delve into statistical learning theory and supervised learning; design efficient algorithms; learn about creating Recommendation Engines; use multi-class classification and deep learning; and more. You will explore, in depth, topics such as data mining, classification, clustering, regression, predictive modeling, anomaly detection, boosted trees with XGBOOST, and more. More than just knowing the outcome, you'll understand how these concepts work and what they do. With a slow learning curve on topics such as neural networks, you will explore deep learning, and more. By the end of this book, you will be able to perform machine learning with R in the cloud using AWS in various scenarios with different datasets. Style and approach The book delivers practical and real-world solutions to problems and a variety of tasks such as complex recommendation systems. By the end of this book, you will have gained expertise in performing R machine learning and will be able to build complex machine learning projects using R and its packages.
Mastering Visual Studio .NET
Author: Ian Griffiths
Publisher: "O'Reilly Media, Inc."
ISBN: 9780596003609
Category : Computers
Languages : en
Pages : 420
Book Description
This book enables intermediate and advanced programmers the kind of depth that's really needed, such as advanced window functionality, macros, advanced debugging, and add-ins, etc. With this book, developers will learn the VS.NET development environment from top to bottom.
Publisher: "O'Reilly Media, Inc."
ISBN: 9780596003609
Category : Computers
Languages : en
Pages : 420
Book Description
This book enables intermediate and advanced programmers the kind of depth that's really needed, such as advanced window functionality, macros, advanced debugging, and add-ins, etc. With this book, developers will learn the VS.NET development environment from top to bottom.
Mastering C# and .NET Framework
Author: Marino Posadas
Publisher: Packt Publishing Ltd
ISBN: 1785885405
Category : Computers
Languages : en
Pages : 560
Book Description
Deep dive into C# and .NET architecture to build efficient, powerful applications About This Book Uniquely structured content to help you understand what goes on under the hood of .NET's managed code platform to master .NET programming Deep dive into C# programming and how the code executes via the CLR Packed with hands-on practical examples, you'll understand how to write applications to make full use of the new features of .NET 4.6, .NET Core and C# 6/7 Who This Book Is For This book was written exclusively for .NET developers. If you've been creating C# applications for your clients, at work or at home, this book will help you develop the skills you need to create modern, powerful, and efficient applications in C#. No knowledge of C# 6/7 or .NET 4.6 is needed to follow along—all the latest features are included to help you start writing cross-platform applications immediately. You will need to be familiar with Visual Studio, though all the new features in Visual Studio 2015 will also be covered. What You Will Learn Understand C# core concepts in depth, from sorting algorithms to the Big O notation Get up to speed with the latest changes in C# 6/7 Interface SQL Server and NoSQL databases with .NET Learn SOLID principles and the most relevant GoF Patterns with practical examples in C# 6.0 Defend C# applications against attacks Use Roslyn, a self-hosted framework to compile and advanced edition in both C# and Visual basic .NET languages Discern LINQ and associated Lambda expressions, generics, and delegates Design a .NET application from the ground up Understand the internals of a .NET assembly Grasp some useful advanced features in optimization and parallelism In Detail Mastering C# and .NET Framework will take you in to the depths of C# 6.0/7.0 and .NET 4.6, so you can understand how the platform works when it runs your code, and how you can use this knowledge to write efficient applications. Take full advantage of the new revolution in .NET development, including open source status and cross-platform capability, and get to grips with the architectural changes of CoreCLR. Start with how the CLR executes code, and discover the niche and advanced aspects of C# programming – from delegates and generics, through to asynchronous programming. Run through new forms of type declarations and assignments, source code callers, static using syntax, auto-property initializers, dictionary initializers, null conditional operators, and many others. Then unlock the true potential of the .NET platform. Learn how to write OWASP-compliant applications, how to properly implement design patterns in C#, and how to follow the general SOLID principles and its implementations in C# code. We finish by focusing on tips and tricks that you'll need to get the most from C# and .NET. This book also covers .NET Core 1.1 concepts as per the latest RTM release in the last chapter. Style and approach This book uses hands-on practical code examples that will take you into the depths of C# and .NET. Packed with hands-on practical examples, it is great as a tutorial, or as a reference guide.
Publisher: Packt Publishing Ltd
ISBN: 1785885405
Category : Computers
Languages : en
Pages : 560
Book Description
Deep dive into C# and .NET architecture to build efficient, powerful applications About This Book Uniquely structured content to help you understand what goes on under the hood of .NET's managed code platform to master .NET programming Deep dive into C# programming and how the code executes via the CLR Packed with hands-on practical examples, you'll understand how to write applications to make full use of the new features of .NET 4.6, .NET Core and C# 6/7 Who This Book Is For This book was written exclusively for .NET developers. If you've been creating C# applications for your clients, at work or at home, this book will help you develop the skills you need to create modern, powerful, and efficient applications in C#. No knowledge of C# 6/7 or .NET 4.6 is needed to follow along—all the latest features are included to help you start writing cross-platform applications immediately. You will need to be familiar with Visual Studio, though all the new features in Visual Studio 2015 will also be covered. What You Will Learn Understand C# core concepts in depth, from sorting algorithms to the Big O notation Get up to speed with the latest changes in C# 6/7 Interface SQL Server and NoSQL databases with .NET Learn SOLID principles and the most relevant GoF Patterns with practical examples in C# 6.0 Defend C# applications against attacks Use Roslyn, a self-hosted framework to compile and advanced edition in both C# and Visual basic .NET languages Discern LINQ and associated Lambda expressions, generics, and delegates Design a .NET application from the ground up Understand the internals of a .NET assembly Grasp some useful advanced features in optimization and parallelism In Detail Mastering C# and .NET Framework will take you in to the depths of C# 6.0/7.0 and .NET 4.6, so you can understand how the platform works when it runs your code, and how you can use this knowledge to write efficient applications. Take full advantage of the new revolution in .NET development, including open source status and cross-platform capability, and get to grips with the architectural changes of CoreCLR. Start with how the CLR executes code, and discover the niche and advanced aspects of C# programming – from delegates and generics, through to asynchronous programming. Run through new forms of type declarations and assignments, source code callers, static using syntax, auto-property initializers, dictionary initializers, null conditional operators, and many others. Then unlock the true potential of the .NET platform. Learn how to write OWASP-compliant applications, how to properly implement design patterns in C#, and how to follow the general SOLID principles and its implementations in C# code. We finish by focusing on tips and tricks that you'll need to get the most from C# and .NET. This book also covers .NET Core 1.1 concepts as per the latest RTM release in the last chapter. Style and approach This book uses hands-on practical code examples that will take you into the depths of C# and .NET. Packed with hands-on practical examples, it is great as a tutorial, or as a reference guide.
Introducing Machine Learning
Author: Dino Esposito
Publisher: Microsoft Press
ISBN: 0135588383
Category : Computers
Languages : en
Pages : 617
Book Description
Master machine learning concepts and develop real-world solutions Machine learning offers immense opportunities, and Introducing Machine Learning delivers practical knowledge to make the most of them. Dino and Francesco Esposito start with a quick overview of the foundations of artificial intelligence and the basic steps of any machine learning project. Next, they introduce Microsoft’s powerful ML.NET library, including capabilities for data processing, training, and evaluation. They present families of algorithms that can be trained to solve real-life problems, as well as deep learning techniques utilizing neural networks. The authors conclude by introducing valuable runtime services available through the Azure cloud platform and consider the long-term business vision for machine learning. · 14-time Microsoft MVP Dino Esposito and Francesco Esposito help you · Explore what’s known about how humans learn and how intelligent software is built · Discover which problems machine learning can address · Understand the machine learning pipeline: the steps leading to a deliverable model · Use AutoML to automatically select the best pipeline for any problem and dataset · Master ML.NET, implement its pipeline, and apply its tasks and algorithms · Explore the mathematical foundations of machine learning · Make predictions, improve decision-making, and apply probabilistic methods · Group data via classification and clustering · Learn the fundamentals of deep learning, including neural network design · Leverage AI cloud services to build better real-world solutions faster About This Book · For professionals who want to build machine learning applications: both developers who need data science skills and data scientists who need relevant programming skills · Includes examples of machine learning coding scenarios built using the ML.NET library
Publisher: Microsoft Press
ISBN: 0135588383
Category : Computers
Languages : en
Pages : 617
Book Description
Master machine learning concepts and develop real-world solutions Machine learning offers immense opportunities, and Introducing Machine Learning delivers practical knowledge to make the most of them. Dino and Francesco Esposito start with a quick overview of the foundations of artificial intelligence and the basic steps of any machine learning project. Next, they introduce Microsoft’s powerful ML.NET library, including capabilities for data processing, training, and evaluation. They present families of algorithms that can be trained to solve real-life problems, as well as deep learning techniques utilizing neural networks. The authors conclude by introducing valuable runtime services available through the Azure cloud platform and consider the long-term business vision for machine learning. · 14-time Microsoft MVP Dino Esposito and Francesco Esposito help you · Explore what’s known about how humans learn and how intelligent software is built · Discover which problems machine learning can address · Understand the machine learning pipeline: the steps leading to a deliverable model · Use AutoML to automatically select the best pipeline for any problem and dataset · Master ML.NET, implement its pipeline, and apply its tasks and algorithms · Explore the mathematical foundations of machine learning · Make predictions, improve decision-making, and apply probabilistic methods · Group data via classification and clustering · Learn the fundamentals of deep learning, including neural network design · Leverage AI cloud services to build better real-world solutions faster About This Book · For professionals who want to build machine learning applications: both developers who need data science skills and data scientists who need relevant programming skills · Includes examples of machine learning coding scenarios built using the ML.NET library