Author: Cybellium Ltd
Publisher: Cybellium Ltd
ISBN:
Category : Computers
Languages : en
Pages : 194
Book Description
Unleash the Power of Big Data Processing with Apache Hadoop Ecosystem Are you ready to embark on a journey into the world of big data processing and analysis using Apache Hadoop? "Mastering Apache Hadoop" is your comprehensive guide to understanding and harnessing the capabilities of Hadoop for processing and managing massive datasets. Whether you're a data engineer seeking to optimize processing pipelines or a business analyst aiming to extract insights from large data, this book equips you with the knowledge and tools to master the art of Hadoop-based data processing. Key Features: 1. Deep Dive into Hadoop Ecosystem: Immerse yourself in the core components and concepts of the Apache Hadoop ecosystem. Understand the architecture, components, and functionalities that make Hadoop a powerful platform for big data. 2. Installation and Configuration: Master the art of installing and configuring Hadoop on various platforms. Learn about cluster setup, resource management, and configuration settings for optimal performance. 3. Hadoop Distributed File System (HDFS): Uncover the power of HDFS for distributed storage and data management. Explore concepts like replication, fault tolerance, and data placement to ensure data durability. 4. MapReduce and Data Processing: Delve into MapReduce, the core data processing paradigm in Hadoop. Learn how to write MapReduce jobs, optimize performance, and leverage parallel processing for efficient data analysis. 5. Data Ingestion and ETL: Discover techniques for ingesting and transforming data in Hadoop. Explore tools like Apache Sqoop and Apache Flume for extracting data from various sources and loading it into Hadoop. 6. Data Querying and Analysis: Master querying and analyzing data using Hadoop. Learn about Hive, Pig, and Spark SQL for querying structured and semi-structured data, and uncover insights that drive informed decisions. 7. Data Storage Formats: Explore data storage formats optimized for Hadoop. Learn about Avro, Parquet, and ORC, and understand how to choose the right format for efficient storage and retrieval. 8. Batch and Stream Processing: Uncover strategies for batch and real-time data processing in Hadoop. Learn how to use Apache Spark and Apache Flink to process data in both batch and streaming modes. 9. Data Visualization and Reporting: Discover techniques for visualizing and reporting on Hadoop data. Explore integration with tools like Apache Zeppelin and Tableau to create compelling visualizations. 10. Real-World Applications: Gain insights into real-world use cases of Apache Hadoop across industries. From financial analysis to social media sentiment analysis, explore how organizations are leveraging Hadoop's capabilities for data-driven innovation. Who This Book Is For: "Mastering Apache Hadoop" is an essential resource for data engineers, analysts, and IT professionals who want to excel in big data processing using Hadoop. Whether you're new to Hadoop or seeking advanced techniques, this book will guide you through the intricacies and empower you to harness the full potential of big data technology.
Mastering Apache Hadoop
Author: Cybellium Ltd
Publisher: Cybellium Ltd
ISBN:
Category : Computers
Languages : en
Pages : 194
Book Description
Unleash the Power of Big Data Processing with Apache Hadoop Ecosystem Are you ready to embark on a journey into the world of big data processing and analysis using Apache Hadoop? "Mastering Apache Hadoop" is your comprehensive guide to understanding and harnessing the capabilities of Hadoop for processing and managing massive datasets. Whether you're a data engineer seeking to optimize processing pipelines or a business analyst aiming to extract insights from large data, this book equips you with the knowledge and tools to master the art of Hadoop-based data processing. Key Features: 1. Deep Dive into Hadoop Ecosystem: Immerse yourself in the core components and concepts of the Apache Hadoop ecosystem. Understand the architecture, components, and functionalities that make Hadoop a powerful platform for big data. 2. Installation and Configuration: Master the art of installing and configuring Hadoop on various platforms. Learn about cluster setup, resource management, and configuration settings for optimal performance. 3. Hadoop Distributed File System (HDFS): Uncover the power of HDFS for distributed storage and data management. Explore concepts like replication, fault tolerance, and data placement to ensure data durability. 4. MapReduce and Data Processing: Delve into MapReduce, the core data processing paradigm in Hadoop. Learn how to write MapReduce jobs, optimize performance, and leverage parallel processing for efficient data analysis. 5. Data Ingestion and ETL: Discover techniques for ingesting and transforming data in Hadoop. Explore tools like Apache Sqoop and Apache Flume for extracting data from various sources and loading it into Hadoop. 6. Data Querying and Analysis: Master querying and analyzing data using Hadoop. Learn about Hive, Pig, and Spark SQL for querying structured and semi-structured data, and uncover insights that drive informed decisions. 7. Data Storage Formats: Explore data storage formats optimized for Hadoop. Learn about Avro, Parquet, and ORC, and understand how to choose the right format for efficient storage and retrieval. 8. Batch and Stream Processing: Uncover strategies for batch and real-time data processing in Hadoop. Learn how to use Apache Spark and Apache Flink to process data in both batch and streaming modes. 9. Data Visualization and Reporting: Discover techniques for visualizing and reporting on Hadoop data. Explore integration with tools like Apache Zeppelin and Tableau to create compelling visualizations. 10. Real-World Applications: Gain insights into real-world use cases of Apache Hadoop across industries. From financial analysis to social media sentiment analysis, explore how organizations are leveraging Hadoop's capabilities for data-driven innovation. Who This Book Is For: "Mastering Apache Hadoop" is an essential resource for data engineers, analysts, and IT professionals who want to excel in big data processing using Hadoop. Whether you're new to Hadoop or seeking advanced techniques, this book will guide you through the intricacies and empower you to harness the full potential of big data technology.
Publisher: Cybellium Ltd
ISBN:
Category : Computers
Languages : en
Pages : 194
Book Description
Unleash the Power of Big Data Processing with Apache Hadoop Ecosystem Are you ready to embark on a journey into the world of big data processing and analysis using Apache Hadoop? "Mastering Apache Hadoop" is your comprehensive guide to understanding and harnessing the capabilities of Hadoop for processing and managing massive datasets. Whether you're a data engineer seeking to optimize processing pipelines or a business analyst aiming to extract insights from large data, this book equips you with the knowledge and tools to master the art of Hadoop-based data processing. Key Features: 1. Deep Dive into Hadoop Ecosystem: Immerse yourself in the core components and concepts of the Apache Hadoop ecosystem. Understand the architecture, components, and functionalities that make Hadoop a powerful platform for big data. 2. Installation and Configuration: Master the art of installing and configuring Hadoop on various platforms. Learn about cluster setup, resource management, and configuration settings for optimal performance. 3. Hadoop Distributed File System (HDFS): Uncover the power of HDFS for distributed storage and data management. Explore concepts like replication, fault tolerance, and data placement to ensure data durability. 4. MapReduce and Data Processing: Delve into MapReduce, the core data processing paradigm in Hadoop. Learn how to write MapReduce jobs, optimize performance, and leverage parallel processing for efficient data analysis. 5. Data Ingestion and ETL: Discover techniques for ingesting and transforming data in Hadoop. Explore tools like Apache Sqoop and Apache Flume for extracting data from various sources and loading it into Hadoop. 6. Data Querying and Analysis: Master querying and analyzing data using Hadoop. Learn about Hive, Pig, and Spark SQL for querying structured and semi-structured data, and uncover insights that drive informed decisions. 7. Data Storage Formats: Explore data storage formats optimized for Hadoop. Learn about Avro, Parquet, and ORC, and understand how to choose the right format for efficient storage and retrieval. 8. Batch and Stream Processing: Uncover strategies for batch and real-time data processing in Hadoop. Learn how to use Apache Spark and Apache Flink to process data in both batch and streaming modes. 9. Data Visualization and Reporting: Discover techniques for visualizing and reporting on Hadoop data. Explore integration with tools like Apache Zeppelin and Tableau to create compelling visualizations. 10. Real-World Applications: Gain insights into real-world use cases of Apache Hadoop across industries. From financial analysis to social media sentiment analysis, explore how organizations are leveraging Hadoop's capabilities for data-driven innovation. Who This Book Is For: "Mastering Apache Hadoop" is an essential resource for data engineers, analysts, and IT professionals who want to excel in big data processing using Hadoop. Whether you're new to Hadoop or seeking advanced techniques, this book will guide you through the intricacies and empower you to harness the full potential of big data technology.
Mastering Hadoop 3
Author: Chanchal Singh
Publisher: Packt Publishing Ltd
ISBN: 1788628322
Category : Computers
Languages : en
Pages : 531
Book Description
A comprehensive guide to mastering the most advanced Hadoop 3 concepts Key FeaturesGet to grips with the newly introduced features and capabilities of Hadoop 3Crunch and process data using MapReduce, YARN, and a host of tools within the Hadoop ecosystemSharpen your Hadoop skills with real-world case studies and codeBook Description Apache Hadoop is one of the most popular big data solutions for distributed storage and for processing large chunks of data. With Hadoop 3, Apache promises to provide a high-performance, more fault-tolerant, and highly efficient big data processing platform, with a focus on improved scalability and increased efficiency. With this guide, you’ll understand advanced concepts of the Hadoop ecosystem tool. You’ll learn how Hadoop works internally, study advanced concepts of different ecosystem tools, discover solutions to real-world use cases, and understand how to secure your cluster. It will then walk you through HDFS, YARN, MapReduce, and Hadoop 3 concepts. You’ll be able to address common challenges like using Kafka efficiently, designing low latency, reliable message delivery Kafka systems, and handling high data volumes. As you advance, you’ll discover how to address major challenges when building an enterprise-grade messaging system, and how to use different stream processing systems along with Kafka to fulfil your enterprise goals. By the end of this book, you’ll have a complete understanding of how components in the Hadoop ecosystem are effectively integrated to implement a fast and reliable data pipeline, and you’ll be equipped to tackle a range of real-world problems in data pipelines. What you will learnGain an in-depth understanding of distributed computing using Hadoop 3Develop enterprise-grade applications using Apache Spark, Flink, and moreBuild scalable and high-performance Hadoop data pipelines with security, monitoring, and data governanceExplore batch data processing patterns and how to model data in HadoopMaster best practices for enterprises using, or planning to use, Hadoop 3 as a data platformUnderstand security aspects of Hadoop, including authorization and authenticationWho this book is for If you want to become a big data professional by mastering the advanced concepts of Hadoop, this book is for you. You’ll also find this book useful if you’re a Hadoop professional looking to strengthen your knowledge of the Hadoop ecosystem. Fundamental knowledge of the Java programming language and basics of Hadoop is necessary to get started with this book.
Publisher: Packt Publishing Ltd
ISBN: 1788628322
Category : Computers
Languages : en
Pages : 531
Book Description
A comprehensive guide to mastering the most advanced Hadoop 3 concepts Key FeaturesGet to grips with the newly introduced features and capabilities of Hadoop 3Crunch and process data using MapReduce, YARN, and a host of tools within the Hadoop ecosystemSharpen your Hadoop skills with real-world case studies and codeBook Description Apache Hadoop is one of the most popular big data solutions for distributed storage and for processing large chunks of data. With Hadoop 3, Apache promises to provide a high-performance, more fault-tolerant, and highly efficient big data processing platform, with a focus on improved scalability and increased efficiency. With this guide, you’ll understand advanced concepts of the Hadoop ecosystem tool. You’ll learn how Hadoop works internally, study advanced concepts of different ecosystem tools, discover solutions to real-world use cases, and understand how to secure your cluster. It will then walk you through HDFS, YARN, MapReduce, and Hadoop 3 concepts. You’ll be able to address common challenges like using Kafka efficiently, designing low latency, reliable message delivery Kafka systems, and handling high data volumes. As you advance, you’ll discover how to address major challenges when building an enterprise-grade messaging system, and how to use different stream processing systems along with Kafka to fulfil your enterprise goals. By the end of this book, you’ll have a complete understanding of how components in the Hadoop ecosystem are effectively integrated to implement a fast and reliable data pipeline, and you’ll be equipped to tackle a range of real-world problems in data pipelines. What you will learnGain an in-depth understanding of distributed computing using Hadoop 3Develop enterprise-grade applications using Apache Spark, Flink, and moreBuild scalable and high-performance Hadoop data pipelines with security, monitoring, and data governanceExplore batch data processing patterns and how to model data in HadoopMaster best practices for enterprises using, or planning to use, Hadoop 3 as a data platformUnderstand security aspects of Hadoop, including authorization and authenticationWho this book is for If you want to become a big data professional by mastering the advanced concepts of Hadoop, this book is for you. You’ll also find this book useful if you’re a Hadoop professional looking to strengthen your knowledge of the Hadoop ecosystem. Fundamental knowledge of the Java programming language and basics of Hadoop is necessary to get started with this book.
Mastering Apache Storm
Author: Ankit Jain
Publisher: Packt Publishing Ltd
ISBN: 1787120406
Category : Computers
Languages : en
Pages : 276
Book Description
Master the intricacies of Apache Storm and develop real-time stream processing applications with ease About This Book Exploit the various real-time processing functionalities offered by Apache Storm such as parallelism, data partitioning, and more Integrate Storm with other Big Data technologies like Hadoop, HBase, and Apache Kafka An easy-to-understand guide to effortlessly create distributed applications with Storm Who This Book Is For If you are a Java developer who wants to enter into the world of real-time stream processing applications using Apache Storm, then this book is for you. No previous experience in Storm is required as this book starts from the basics. After finishing this book, you will be able to develop not-so-complex Storm applications. What You Will Learn Understand the core concepts of Apache Storm and real-time processing Follow the steps to deploy multiple nodes of Storm Cluster Create Trident topologies to support various message-processing semantics Make your cluster sharing effective using Storm scheduling Integrate Apache Storm with other Big Data technologies such as Hadoop, HBase, Kafka, and more Monitor the health of your Storm cluster In Detail Apache Storm is a real-time Big Data processing framework that processes large amounts of data reliably, guaranteeing that every message will be processed. Storm allows you to scale your data as it grows, making it an excellent platform to solve your big data problems. This extensive guide will help you understand right from the basics to the advanced topics of Storm. The book begins with a detailed introduction to real-time processing and where Storm fits in to solve these problems. You'll get an understanding of deploying Storm on clusters by writing a basic Storm Hello World example. Next we'll introduce you to Trident and you'll get a clear understanding of how you can develop and deploy a trident topology. We cover topics such as monitoring, Storm Parallelism, scheduler and log processing, in a very easy to understand manner. You will also learn how to integrate Storm with other well-known Big Data technologies such as HBase, Redis, Kafka, and Hadoop to realize the full potential of Storm. With real-world examples and clear explanations, this book will ensure you will have a thorough mastery of Apache Storm. You will be able to use this knowledge to develop efficient, distributed real-time applications to cater to your business needs. Style and approach This easy-to-follow guide is full of examples and real-world applications to help you get an in-depth understanding of Apache Storm. This book covers the basics thoroughly and also delves into the intermediate and slightly advanced concepts of application development with Apache Storm.
Publisher: Packt Publishing Ltd
ISBN: 1787120406
Category : Computers
Languages : en
Pages : 276
Book Description
Master the intricacies of Apache Storm and develop real-time stream processing applications with ease About This Book Exploit the various real-time processing functionalities offered by Apache Storm such as parallelism, data partitioning, and more Integrate Storm with other Big Data technologies like Hadoop, HBase, and Apache Kafka An easy-to-understand guide to effortlessly create distributed applications with Storm Who This Book Is For If you are a Java developer who wants to enter into the world of real-time stream processing applications using Apache Storm, then this book is for you. No previous experience in Storm is required as this book starts from the basics. After finishing this book, you will be able to develop not-so-complex Storm applications. What You Will Learn Understand the core concepts of Apache Storm and real-time processing Follow the steps to deploy multiple nodes of Storm Cluster Create Trident topologies to support various message-processing semantics Make your cluster sharing effective using Storm scheduling Integrate Apache Storm with other Big Data technologies such as Hadoop, HBase, Kafka, and more Monitor the health of your Storm cluster In Detail Apache Storm is a real-time Big Data processing framework that processes large amounts of data reliably, guaranteeing that every message will be processed. Storm allows you to scale your data as it grows, making it an excellent platform to solve your big data problems. This extensive guide will help you understand right from the basics to the advanced topics of Storm. The book begins with a detailed introduction to real-time processing and where Storm fits in to solve these problems. You'll get an understanding of deploying Storm on clusters by writing a basic Storm Hello World example. Next we'll introduce you to Trident and you'll get a clear understanding of how you can develop and deploy a trident topology. We cover topics such as monitoring, Storm Parallelism, scheduler and log processing, in a very easy to understand manner. You will also learn how to integrate Storm with other well-known Big Data technologies such as HBase, Redis, Kafka, and Hadoop to realize the full potential of Storm. With real-world examples and clear explanations, this book will ensure you will have a thorough mastery of Apache Storm. You will be able to use this knowledge to develop efficient, distributed real-time applications to cater to your business needs. Style and approach This easy-to-follow guide is full of examples and real-world applications to help you get an in-depth understanding of Apache Storm. This book covers the basics thoroughly and also delves into the intermediate and slightly advanced concepts of application development with Apache Storm.
Hadoop: The Definitive Guide
Author: Tom White
Publisher: "O'Reilly Media, Inc."
ISBN: 1449338771
Category : Computers
Languages : en
Pages : 687
Book Description
Ready to unlock the power of your data? With this comprehensive guide, you’ll learn how to build and maintain reliable, scalable, distributed systems with Apache Hadoop. This book is ideal for programmers looking to analyze datasets of any size, and for administrators who want to set up and run Hadoop clusters. You’ll find illuminating case studies that demonstrate how Hadoop is used to solve specific problems. This third edition covers recent changes to Hadoop, including material on the new MapReduce API, as well as MapReduce 2 and its more flexible execution model (YARN). Store large datasets with the Hadoop Distributed File System (HDFS) Run distributed computations with MapReduce Use Hadoop’s data and I/O building blocks for compression, data integrity, serialization (including Avro), and persistence Discover common pitfalls and advanced features for writing real-world MapReduce programs Design, build, and administer a dedicated Hadoop cluster—or run Hadoop in the cloud Load data from relational databases into HDFS, using Sqoop Perform large-scale data processing with the Pig query language Analyze datasets with Hive, Hadoop’s data warehousing system Take advantage of HBase for structured and semi-structured data, and ZooKeeper for building distributed systems
Publisher: "O'Reilly Media, Inc."
ISBN: 1449338771
Category : Computers
Languages : en
Pages : 687
Book Description
Ready to unlock the power of your data? With this comprehensive guide, you’ll learn how to build and maintain reliable, scalable, distributed systems with Apache Hadoop. This book is ideal for programmers looking to analyze datasets of any size, and for administrators who want to set up and run Hadoop clusters. You’ll find illuminating case studies that demonstrate how Hadoop is used to solve specific problems. This third edition covers recent changes to Hadoop, including material on the new MapReduce API, as well as MapReduce 2 and its more flexible execution model (YARN). Store large datasets with the Hadoop Distributed File System (HDFS) Run distributed computations with MapReduce Use Hadoop’s data and I/O building blocks for compression, data integrity, serialization (including Avro), and persistence Discover common pitfalls and advanced features for writing real-world MapReduce programs Design, build, and administer a dedicated Hadoop cluster—or run Hadoop in the cloud Load data from relational databases into HDFS, using Sqoop Perform large-scale data processing with the Pig query language Analyze datasets with Hive, Hadoop’s data warehousing system Take advantage of HBase for structured and semi-structured data, and ZooKeeper for building distributed systems
Mastering Apache Spark
Author: Mike Frampton
Publisher:
ISBN: 9781783987146
Category : Data mining
Languages : en
Pages : 0
Book Description
Gain expertise in processing and storing data by using advanced techniques with Apache SparkAbout This Book- Explore the integration of Apache Spark with third party applications such as H20, Databricks and Titan- Evaluate how Cassandra and Hbase can be used for storage- An advanced guide with a combination of instructions and practical examples to extend the most up-to date Spark functionalitiesWho This Book Is ForIf you are a developer with some experience with Spark and want to strengthen your knowledge of how to get around in the world of Spark, then this book is ideal for you. Basic knowledge of Linux, Hadoop and Spark is assumed. Reasonable knowledge of Scala is expected.What You Will Learn- Extend the tools available for processing and storage- Examine clustering and classification using MLlib- Discover Spark stream processing via Flume, HDFS- Create a schema in Spark SQL, and learn how a Spark schema can be populated with data- Study Spark based graph processing using Spark GraphX- Combine Spark with H20 and deep learning and learn why it is useful- Evaluate how graph storage works with Apache Spark, Titan, HBase and Cassandra- Use Apache Spark in the cloud with Databricks and AWSIn DetailApache Spark is an in-memory cluster based parallel processing system that provides a wide range of functionality like graph processing, machine learning, stream processing and SQL. It operates at unprecedented speeds, is easy to use and offers a rich set of data transformations.This book aims to take your limited knowledge of Spark to the next level by teaching you how to expand Spark functionality. The book commences with an overview of the Spark eco-system. You will learn how to use MLlib to create a fully working neural net for handwriting recognition. You will then discover how stream processing can be tuned for optimal performance and to ensure parallel processing. The book extends to show how to incorporate H20 for machine learning, Titan for graph based storage, Databricks for cloud-based Spark. Intermediate Scala based code examples are provided for Apache Spark module processing in a CentOS Linux and Databricks cloud environment.Style and approachThis book is an extensive guide to Apache Spark modules and tools and shows how Spark's functionality can be extended for real-time processing and storage with worked examples.
Publisher:
ISBN: 9781783987146
Category : Data mining
Languages : en
Pages : 0
Book Description
Gain expertise in processing and storing data by using advanced techniques with Apache SparkAbout This Book- Explore the integration of Apache Spark with third party applications such as H20, Databricks and Titan- Evaluate how Cassandra and Hbase can be used for storage- An advanced guide with a combination of instructions and practical examples to extend the most up-to date Spark functionalitiesWho This Book Is ForIf you are a developer with some experience with Spark and want to strengthen your knowledge of how to get around in the world of Spark, then this book is ideal for you. Basic knowledge of Linux, Hadoop and Spark is assumed. Reasonable knowledge of Scala is expected.What You Will Learn- Extend the tools available for processing and storage- Examine clustering and classification using MLlib- Discover Spark stream processing via Flume, HDFS- Create a schema in Spark SQL, and learn how a Spark schema can be populated with data- Study Spark based graph processing using Spark GraphX- Combine Spark with H20 and deep learning and learn why it is useful- Evaluate how graph storage works with Apache Spark, Titan, HBase and Cassandra- Use Apache Spark in the cloud with Databricks and AWSIn DetailApache Spark is an in-memory cluster based parallel processing system that provides a wide range of functionality like graph processing, machine learning, stream processing and SQL. It operates at unprecedented speeds, is easy to use and offers a rich set of data transformations.This book aims to take your limited knowledge of Spark to the next level by teaching you how to expand Spark functionality. The book commences with an overview of the Spark eco-system. You will learn how to use MLlib to create a fully working neural net for handwriting recognition. You will then discover how stream processing can be tuned for optimal performance and to ensure parallel processing. The book extends to show how to incorporate H20 for machine learning, Titan for graph based storage, Databricks for cloud-based Spark. Intermediate Scala based code examples are provided for Apache Spark module processing in a CentOS Linux and Databricks cloud environment.Style and approachThis book is an extensive guide to Apache Spark modules and tools and shows how Spark's functionality can be extended for real-time processing and storage with worked examples.
Mastering Hadoop
Author: Sandeep Karanth
Publisher: Packt Publishing Ltd
ISBN: 1783983655
Category : Computers
Languages : en
Pages : 549
Book Description
Do you want to broaden your Hadoop skill set and take your knowledge to the next level? Do you wish to enhance your knowledge of Hadoop to solve challenging data processing problems? Are your Hadoop jobs, Pig scripts, or Hive queries not working as fast as you intend? Are you looking to understand the benefits of upgrading Hadoop? If the answer is yes to any of these, this book is for you. It assumes novice-level familiarity with Hadoop.
Publisher: Packt Publishing Ltd
ISBN: 1783983655
Category : Computers
Languages : en
Pages : 549
Book Description
Do you want to broaden your Hadoop skill set and take your knowledge to the next level? Do you wish to enhance your knowledge of Hadoop to solve challenging data processing problems? Are your Hadoop jobs, Pig scripts, or Hive queries not working as fast as you intend? Are you looking to understand the benefits of upgrading Hadoop? If the answer is yes to any of these, this book is for you. It assumes novice-level familiarity with Hadoop.
Mastering Spark with R
Author: Javier Luraschi
Publisher: "O'Reilly Media, Inc."
ISBN: 1492046329
Category : Computers
Languages : en
Pages : 296
Book Description
If you’re like most R users, you have deep knowledge and love for statistics. But as your organization continues to collect huge amounts of data, adding tools such as Apache Spark makes a lot of sense. With this practical book, data scientists and professionals working with large-scale data applications will learn how to use Spark from R to tackle big data and big compute problems. Authors Javier Luraschi, Kevin Kuo, and Edgar Ruiz show you how to use R with Spark to solve different data analysis problems. This book covers relevant data science topics, cluster computing, and issues that should interest even the most advanced users. Analyze, explore, transform, and visualize data in Apache Spark with R Create statistical models to extract information and predict outcomes; automate the process in production-ready workflows Perform analysis and modeling across many machines using distributed computing techniques Use large-scale data from multiple sources and different formats with ease from within Spark Learn about alternative modeling frameworks for graph processing, geospatial analysis, and genomics at scale Dive into advanced topics including custom transformations, real-time data processing, and creating custom Spark extensions
Publisher: "O'Reilly Media, Inc."
ISBN: 1492046329
Category : Computers
Languages : en
Pages : 296
Book Description
If you’re like most R users, you have deep knowledge and love for statistics. But as your organization continues to collect huge amounts of data, adding tools such as Apache Spark makes a lot of sense. With this practical book, data scientists and professionals working with large-scale data applications will learn how to use Spark from R to tackle big data and big compute problems. Authors Javier Luraschi, Kevin Kuo, and Edgar Ruiz show you how to use R with Spark to solve different data analysis problems. This book covers relevant data science topics, cluster computing, and issues that should interest even the most advanced users. Analyze, explore, transform, and visualize data in Apache Spark with R Create statistical models to extract information and predict outcomes; automate the process in production-ready workflows Perform analysis and modeling across many machines using distributed computing techniques Use large-scale data from multiple sources and different formats with ease from within Spark Learn about alternative modeling frameworks for graph processing, geospatial analysis, and genomics at scale Dive into advanced topics including custom transformations, real-time data processing, and creating custom Spark extensions
Practical Hadoop Ecosystem
Author: Deepak Vohra
Publisher: Apress
ISBN: 1484221990
Category : Computers
Languages : en
Pages : 429
Book Description
Learn how to use the Apache Hadoop projects, including MapReduce, HDFS, Apache Hive, Apache HBase, Apache Kafka, Apache Mahout, and Apache Solr. From setting up the environment to running sample applications each chapter in this book is a practical tutorial on using an Apache Hadoop ecosystem project. While several books on Apache Hadoop are available, most are based on the main projects, MapReduce and HDFS, and none discusses the other Apache Hadoop ecosystem projects and how they all work together as a cohesive big data development platform. What You Will Learn: Set up the environment in Linux for Hadoop projects using Cloudera Hadoop Distribution CDH 5 Run a MapReduce job Store data with Apache Hive, and Apache HBase Index data in HDFS with Apache Solr Develop a Kafka messaging system Stream Logs to HDFS with Apache Flume Transfer data from MySQL database to Hive, HDFS, and HBase with Sqoop Create a Hive table over Apache Solr Develop a Mahout User Recommender System Who This Book Is For: Apache Hadoop developers. Pre-requisite knowledge of Linux and some knowledge of Hadoop is required.
Publisher: Apress
ISBN: 1484221990
Category : Computers
Languages : en
Pages : 429
Book Description
Learn how to use the Apache Hadoop projects, including MapReduce, HDFS, Apache Hive, Apache HBase, Apache Kafka, Apache Mahout, and Apache Solr. From setting up the environment to running sample applications each chapter in this book is a practical tutorial on using an Apache Hadoop ecosystem project. While several books on Apache Hadoop are available, most are based on the main projects, MapReduce and HDFS, and none discusses the other Apache Hadoop ecosystem projects and how they all work together as a cohesive big data development platform. What You Will Learn: Set up the environment in Linux for Hadoop projects using Cloudera Hadoop Distribution CDH 5 Run a MapReduce job Store data with Apache Hive, and Apache HBase Index data in HDFS with Apache Solr Develop a Kafka messaging system Stream Logs to HDFS with Apache Flume Transfer data from MySQL database to Hive, HDFS, and HBase with Sqoop Create a Hive table over Apache Solr Develop a Mahout User Recommender System Who This Book Is For: Apache Hadoop developers. Pre-requisite knowledge of Linux and some knowledge of Hadoop is required.
Apache Hadoop 3 Quick Start Guide
Author: Hrishikesh Vijay Karambelkar
Publisher: Packt Publishing Ltd
ISBN: 1788994345
Category : Computers
Languages : en
Pages : 214
Book Description
A fast paced guide that will help you learn about Apache Hadoop 3 and its ecosystem Key FeaturesSet up, configure and get started with Hadoop to get useful insights from large data setsWork with the different components of Hadoop such as MapReduce, HDFS and YARN Learn about the new features introduced in Hadoop 3Book Description Apache Hadoop is a widely used distributed data platform. It enables large datasets to be efficiently processed instead of using one large computer to store and process the data. This book will get you started with the Hadoop ecosystem, and introduce you to the main technical topics, including MapReduce, YARN, and HDFS. The book begins with an overview of big data and Apache Hadoop. Then, you will set up a pseudo Hadoop development environment and a multi-node enterprise Hadoop cluster. You will see how the parallel programming paradigm, such as MapReduce, can solve many complex data processing problems. The book also covers the important aspects of the big data software development lifecycle, including quality assurance and control, performance, administration, and monitoring. You will then learn about the Hadoop ecosystem, and tools such as Kafka, Sqoop, Flume, Pig, Hive, and HBase. Finally, you will look at advanced topics, including real time streaming using Apache Storm, and data analytics using Apache Spark. By the end of the book, you will be well versed with different configurations of the Hadoop 3 cluster. What you will learnStore and analyze data at scale using HDFS, MapReduce and YARNInstall and configure Hadoop 3 in different modesUse Yarn effectively to run different applications on Hadoop based platformUnderstand and monitor how Hadoop cluster is managedConsume streaming data using Storm, and then analyze it using SparkExplore Apache Hadoop ecosystem components, such as Flume, Sqoop, HBase, Hive, and KafkaWho this book is for Aspiring Big Data professionals who want to learn the essentials of Hadoop 3 will find this book to be useful. Existing Hadoop users who want to get up to speed with the new features introduced in Hadoop 3 will also benefit from this book. Having knowledge of Java programming will be an added advantage.
Publisher: Packt Publishing Ltd
ISBN: 1788994345
Category : Computers
Languages : en
Pages : 214
Book Description
A fast paced guide that will help you learn about Apache Hadoop 3 and its ecosystem Key FeaturesSet up, configure and get started with Hadoop to get useful insights from large data setsWork with the different components of Hadoop such as MapReduce, HDFS and YARN Learn about the new features introduced in Hadoop 3Book Description Apache Hadoop is a widely used distributed data platform. It enables large datasets to be efficiently processed instead of using one large computer to store and process the data. This book will get you started with the Hadoop ecosystem, and introduce you to the main technical topics, including MapReduce, YARN, and HDFS. The book begins with an overview of big data and Apache Hadoop. Then, you will set up a pseudo Hadoop development environment and a multi-node enterprise Hadoop cluster. You will see how the parallel programming paradigm, such as MapReduce, can solve many complex data processing problems. The book also covers the important aspects of the big data software development lifecycle, including quality assurance and control, performance, administration, and monitoring. You will then learn about the Hadoop ecosystem, and tools such as Kafka, Sqoop, Flume, Pig, Hive, and HBase. Finally, you will look at advanced topics, including real time streaming using Apache Storm, and data analytics using Apache Spark. By the end of the book, you will be well versed with different configurations of the Hadoop 3 cluster. What you will learnStore and analyze data at scale using HDFS, MapReduce and YARNInstall and configure Hadoop 3 in different modesUse Yarn effectively to run different applications on Hadoop based platformUnderstand and monitor how Hadoop cluster is managedConsume streaming data using Storm, and then analyze it using SparkExplore Apache Hadoop ecosystem components, such as Flume, Sqoop, HBase, Hive, and KafkaWho this book is for Aspiring Big Data professionals who want to learn the essentials of Hadoop 3 will find this book to be useful. Existing Hadoop users who want to get up to speed with the new features introduced in Hadoop 3 will also benefit from this book. Having knowledge of Java programming will be an added advantage.
Mastering Data Engineering: Advanced Techniques with Apache Hadoop and Hive
Author: Peter Jones
Publisher: Walzone Press
ISBN:
Category : Computers
Languages : en
Pages : 195
Book Description
Immerse yourself in the realm of big data with "Mastering Data Engineering: Advanced Techniques with Apache Hadoop and Hive," your definitive guide to mastering two of the most potent technologies in the data engineering landscape. This book provides comprehensive insights into the complexities of Apache Hadoop and Hive, equipping you with the expertise to store, manage, and analyze vast amounts of data with precision. From setting up your initial Hadoop cluster to performing sophisticated data analytics with HiveQL, each chapter methodically builds on the previous one, ensuring a robust understanding of both fundamental concepts and advanced methodologies. Discover how to harness HDFS for scalable and reliable storage, utilize MapReduce for intricate data processing, and fully exploit data warehousing capabilities with Hive. Targeted at data engineers, analysts, and IT professionals striving to advance their proficiency in big data technologies, this book is an indispensable resource. Through a blend of theoretical insights, practical knowledge, and real-world examples, you will master data storage optimization, advanced Hive functionalities, and best practices for secure and efficient data management. Equip yourself to confront big data challenges with confidence and skill with "Mastering Data Engineering: Advanced Techniques with Apache Hadoop and Hive." Whether you're a novice in the field or seeking to expand your expertise, this book will be your invaluable guide on your data engineering journey.
Publisher: Walzone Press
ISBN:
Category : Computers
Languages : en
Pages : 195
Book Description
Immerse yourself in the realm of big data with "Mastering Data Engineering: Advanced Techniques with Apache Hadoop and Hive," your definitive guide to mastering two of the most potent technologies in the data engineering landscape. This book provides comprehensive insights into the complexities of Apache Hadoop and Hive, equipping you with the expertise to store, manage, and analyze vast amounts of data with precision. From setting up your initial Hadoop cluster to performing sophisticated data analytics with HiveQL, each chapter methodically builds on the previous one, ensuring a robust understanding of both fundamental concepts and advanced methodologies. Discover how to harness HDFS for scalable and reliable storage, utilize MapReduce for intricate data processing, and fully exploit data warehousing capabilities with Hive. Targeted at data engineers, analysts, and IT professionals striving to advance their proficiency in big data technologies, this book is an indispensable resource. Through a blend of theoretical insights, practical knowledge, and real-world examples, you will master data storage optimization, advanced Hive functionalities, and best practices for secure and efficient data management. Equip yourself to confront big data challenges with confidence and skill with "Mastering Data Engineering: Advanced Techniques with Apache Hadoop and Hive." Whether you're a novice in the field or seeking to expand your expertise, this book will be your invaluable guide on your data engineering journey.