Author: Diego Rodrigues
Publisher: Diego Rodrigues
ISBN:
Category : Business & Economics
Languages : en
Pages : 147
Book Description
Imagine acquiring a book and, as a bonus, gaining access to a 24/7 AI-assisted Virtual Tutoring to personalize your learning journey, reinforce knowledge, and receive mentorship for developing and implementing real projects... ...Welcome to the Revolution of Personalized Learning with AI-Assisted Virtual Tutoring! Discover " MASTER PYTHON DATA ENGINEERING: From Fundamentals to Advanced Applications with Virtual AI Tutoring," the essential guide for professionals and enthusiasts who want to master data engineering with Python. This innovative manual, written by Diego Rodrigues, an author with over 140 titles published in six languages, combines high-quality content with the advanced technology of IAGO, a virtual tutor developed and hosted on the OpenAI platform. Innovative Features: Personalized Learning: IAGO adapts the content to your knowledge level, offering detailed explanations and personalized exercises. Immediate Feedback: Receive corrections and suggestions in real time, speeding up your learning process. Interactivity and Engagement: Interact with the tutor via text or voice, making learning more dynamic and motivating. Project Development Mentorship: Get practical guidance to develop and implement real projects, applying the knowledge gained. Total Flexibility: Access the tutor anywhere, anytime, whether on a desktop, notebook, or smartphone with web access. Take advantage of the Limited-Time Launch Promotional Price! Don't miss the opportunity to transform your learning journey with an innovative and effective method. This book has been carefully structured to meet your needs and exceed your expectations, ensuring you are prepared to face challenges and seize opportunities in the field of data engineering. Open the book sample and discover how to access the select club of cutting-edge technology professionals. Take advantage of this unique opportunity and achieve your goals! TAGS: data engineering automation science big Pandas NumPy Dask SQLAlchemy web scraping BeautifulSoup Scrapy APIs ETL DataOps Data Lakes Data Warehouses AWS Google Cloud Microsoft Azure Hadoop Spark machine learning artificial intelligence data pipelines data visualization Matplotlib Seaborn data analysis relational databases NoSQL MongoDB Apache Airflow Kafka real-time data governance data security compliance mentorship Diego Rodrigues Tableau Power BI Snowflake Informatica Alation Talend Apache Flink Jupyter Notebooks DevOps Databricks Cloudera Hortonworks Teradata IBM Cloud Oracle Cloud Salesforce SAP HANA ElasticSearch Redis Kubernetes Docker Jenkins GitHub GitLab Continuous Integration Continuous Deployment CI/CD digital transformation predictive analysis business intelligence IoT Internet of Things smart cities connected health Industry 4.0 fintechs retail education marketing competitive intelligence data science automated testing custom reports operational efficiency Python Java Linux Kali Linux HTML ASP.NET Ada Assembly Language BASIC Borland Delphi C C# C++ CSS Cobol Compilers DHTML Fortran General HTML Java JavaScript LISP PHP Pascal Perl Prolog RPG Ruby SQL Swift UML Elixir Haskell VBScript Visual Basic XHTML XML XSL Django Flask Ruby on Rails Angular React Vue.js Node.js Laravel Spring Hibernate .NET Core Express.js TensorFlow PyTorch Jupyter Notebook Keras Bootstrap Foundation jQuery SASS LESS Scala Groovy MATLAB R Objective-C Rust Go Kotlin TypeScript Elixir Dart SwiftUI Xamarin React Native NumPy Pandas SciPy Matplotlib Seaborn D3.js OpenCV NLTK PySpark BeautifulSoup Scikit-learn XGBoost CatBoost LightGBM FastAPI Celery Tornado Redis RabbitMQ Kubernetes Docker Jenkins Terraform Ansible Vagrant GitHub GitLab CircleCI Travis CI Linear Regression Logistic Regression Decision Trees Random Forests FastAPI AI ML K-Means Clustering Support Vector Tornado Machines Gradient Boosting Neural Networks LSTMs CNNs GANs ANDROID IOS MACOS WINDOWS Nmap Metasploit Framework Wireshark Aircrack-ng John the Ripper Burp Suite SQLmap Maltego Autopsy Volatility IDA Pro OllyDbg YARA Snort ClamAV iOS Netcat Tcpdump Foremost Cuckoo Sandbox Fierce HTTrack Kismet Hydra Nikto OpenVAS Nessus ZAP Radare2 Binwalk GDB OWASP Amass Dnsenum Dirbuster Wpscan Responder Setoolkit Searchsploit Recon-ng BeEF aws google cloud ibm azure databricks nvidia meta x Power BI IoT CI/CD Hadoop Spark Pandas NumPy Dask SQLAlchemy web scraping mysql big data science openai chatgpt Handler RunOnUiThread()Qiskit Q# Cassandra Bigtable VIRUS MALWARE docker kubernetes Kali Linux Nmap Metasploit Wireshark information security pen test cybersecurity Linux distributions ethical hacking vulnerability analysis system exploration wireless attacks web application security malware analysis social engineering Android iOS Social Engineering Toolkit SET computer science IT professionals cybersecurity careers cybersecurity expertise cybersecurity library cybersecurity training Linux operating systems cybersecurity tools ethical hacking tools security testing penetration test cycle security concepts mobile security cybersecurity fundamentals cybersecurity techniques skills cybersecurity industry global cybersecurity trends Kali Linux tools education innovation penetration test tools best practices global companies cybersecurity solutions IBM Google Microsoft AWS Cisco Oracle consulting cybersecurity framework network security courses cybersecurity tutorials Linux security challenges landscape cloud security threats compliance research technology React Native Flutter Ionic Xamarin HTML CSS JavaScript Java Kotlin Swift Objective-C Web Views Capacitor APIs REST GraphQL Firebase Redux Provider Angular Vue.js Bitrise GitHub Actions Material Design Cupertino Fastlane Appium Selenium Jest CodePush Firebase Expo Visual Studio C# .NET Azure Google Play App Store CodePush IoT AR VR
MASTER PYTHON DATA ENGINEERING with Virtual AI Tutoring
Author: Diego Rodrigues
Publisher: Diego Rodrigues
ISBN:
Category : Business & Economics
Languages : en
Pages : 147
Book Description
Imagine acquiring a book and, as a bonus, gaining access to a 24/7 AI-assisted Virtual Tutoring to personalize your learning journey, reinforce knowledge, and receive mentorship for developing and implementing real projects... ...Welcome to the Revolution of Personalized Learning with AI-Assisted Virtual Tutoring! Discover " MASTER PYTHON DATA ENGINEERING: From Fundamentals to Advanced Applications with Virtual AI Tutoring," the essential guide for professionals and enthusiasts who want to master data engineering with Python. This innovative manual, written by Diego Rodrigues, an author with over 140 titles published in six languages, combines high-quality content with the advanced technology of IAGO, a virtual tutor developed and hosted on the OpenAI platform. Innovative Features: Personalized Learning: IAGO adapts the content to your knowledge level, offering detailed explanations and personalized exercises. Immediate Feedback: Receive corrections and suggestions in real time, speeding up your learning process. Interactivity and Engagement: Interact with the tutor via text or voice, making learning more dynamic and motivating. Project Development Mentorship: Get practical guidance to develop and implement real projects, applying the knowledge gained. Total Flexibility: Access the tutor anywhere, anytime, whether on a desktop, notebook, or smartphone with web access. Take advantage of the Limited-Time Launch Promotional Price! Don't miss the opportunity to transform your learning journey with an innovative and effective method. This book has been carefully structured to meet your needs and exceed your expectations, ensuring you are prepared to face challenges and seize opportunities in the field of data engineering. Open the book sample and discover how to access the select club of cutting-edge technology professionals. Take advantage of this unique opportunity and achieve your goals! TAGS: data engineering automation science big Pandas NumPy Dask SQLAlchemy web scraping BeautifulSoup Scrapy APIs ETL DataOps Data Lakes Data Warehouses AWS Google Cloud Microsoft Azure Hadoop Spark machine learning artificial intelligence data pipelines data visualization Matplotlib Seaborn data analysis relational databases NoSQL MongoDB Apache Airflow Kafka real-time data governance data security compliance mentorship Diego Rodrigues Tableau Power BI Snowflake Informatica Alation Talend Apache Flink Jupyter Notebooks DevOps Databricks Cloudera Hortonworks Teradata IBM Cloud Oracle Cloud Salesforce SAP HANA ElasticSearch Redis Kubernetes Docker Jenkins GitHub GitLab Continuous Integration Continuous Deployment CI/CD digital transformation predictive analysis business intelligence IoT Internet of Things smart cities connected health Industry 4.0 fintechs retail education marketing competitive intelligence data science automated testing custom reports operational efficiency Python Java Linux Kali Linux HTML ASP.NET Ada Assembly Language BASIC Borland Delphi C C# C++ CSS Cobol Compilers DHTML Fortran General HTML Java JavaScript LISP PHP Pascal Perl Prolog RPG Ruby SQL Swift UML Elixir Haskell VBScript Visual Basic XHTML XML XSL Django Flask Ruby on Rails Angular React Vue.js Node.js Laravel Spring Hibernate .NET Core Express.js TensorFlow PyTorch Jupyter Notebook Keras Bootstrap Foundation jQuery SASS LESS Scala Groovy MATLAB R Objective-C Rust Go Kotlin TypeScript Elixir Dart SwiftUI Xamarin React Native NumPy Pandas SciPy Matplotlib Seaborn D3.js OpenCV NLTK PySpark BeautifulSoup Scikit-learn XGBoost CatBoost LightGBM FastAPI Celery Tornado Redis RabbitMQ Kubernetes Docker Jenkins Terraform Ansible Vagrant GitHub GitLab CircleCI Travis CI Linear Regression Logistic Regression Decision Trees Random Forests FastAPI AI ML K-Means Clustering Support Vector Tornado Machines Gradient Boosting Neural Networks LSTMs CNNs GANs ANDROID IOS MACOS WINDOWS Nmap Metasploit Framework Wireshark Aircrack-ng John the Ripper Burp Suite SQLmap Maltego Autopsy Volatility IDA Pro OllyDbg YARA Snort ClamAV iOS Netcat Tcpdump Foremost Cuckoo Sandbox Fierce HTTrack Kismet Hydra Nikto OpenVAS Nessus ZAP Radare2 Binwalk GDB OWASP Amass Dnsenum Dirbuster Wpscan Responder Setoolkit Searchsploit Recon-ng BeEF aws google cloud ibm azure databricks nvidia meta x Power BI IoT CI/CD Hadoop Spark Pandas NumPy Dask SQLAlchemy web scraping mysql big data science openai chatgpt Handler RunOnUiThread()Qiskit Q# Cassandra Bigtable VIRUS MALWARE docker kubernetes Kali Linux Nmap Metasploit Wireshark information security pen test cybersecurity Linux distributions ethical hacking vulnerability analysis system exploration wireless attacks web application security malware analysis social engineering Android iOS Social Engineering Toolkit SET computer science IT professionals cybersecurity careers cybersecurity expertise cybersecurity library cybersecurity training Linux operating systems cybersecurity tools ethical hacking tools security testing penetration test cycle security concepts mobile security cybersecurity fundamentals cybersecurity techniques skills cybersecurity industry global cybersecurity trends Kali Linux tools education innovation penetration test tools best practices global companies cybersecurity solutions IBM Google Microsoft AWS Cisco Oracle consulting cybersecurity framework network security courses cybersecurity tutorials Linux security challenges landscape cloud security threats compliance research technology React Native Flutter Ionic Xamarin HTML CSS JavaScript Java Kotlin Swift Objective-C Web Views Capacitor APIs REST GraphQL Firebase Redux Provider Angular Vue.js Bitrise GitHub Actions Material Design Cupertino Fastlane Appium Selenium Jest CodePush Firebase Expo Visual Studio C# .NET Azure Google Play App Store CodePush IoT AR VR
Publisher: Diego Rodrigues
ISBN:
Category : Business & Economics
Languages : en
Pages : 147
Book Description
Imagine acquiring a book and, as a bonus, gaining access to a 24/7 AI-assisted Virtual Tutoring to personalize your learning journey, reinforce knowledge, and receive mentorship for developing and implementing real projects... ...Welcome to the Revolution of Personalized Learning with AI-Assisted Virtual Tutoring! Discover " MASTER PYTHON DATA ENGINEERING: From Fundamentals to Advanced Applications with Virtual AI Tutoring," the essential guide for professionals and enthusiasts who want to master data engineering with Python. This innovative manual, written by Diego Rodrigues, an author with over 140 titles published in six languages, combines high-quality content with the advanced technology of IAGO, a virtual tutor developed and hosted on the OpenAI platform. Innovative Features: Personalized Learning: IAGO adapts the content to your knowledge level, offering detailed explanations and personalized exercises. Immediate Feedback: Receive corrections and suggestions in real time, speeding up your learning process. Interactivity and Engagement: Interact with the tutor via text or voice, making learning more dynamic and motivating. Project Development Mentorship: Get practical guidance to develop and implement real projects, applying the knowledge gained. Total Flexibility: Access the tutor anywhere, anytime, whether on a desktop, notebook, or smartphone with web access. Take advantage of the Limited-Time Launch Promotional Price! Don't miss the opportunity to transform your learning journey with an innovative and effective method. This book has been carefully structured to meet your needs and exceed your expectations, ensuring you are prepared to face challenges and seize opportunities in the field of data engineering. Open the book sample and discover how to access the select club of cutting-edge technology professionals. Take advantage of this unique opportunity and achieve your goals! TAGS: data engineering automation science big Pandas NumPy Dask SQLAlchemy web scraping BeautifulSoup Scrapy APIs ETL DataOps Data Lakes Data Warehouses AWS Google Cloud Microsoft Azure Hadoop Spark machine learning artificial intelligence data pipelines data visualization Matplotlib Seaborn data analysis relational databases NoSQL MongoDB Apache Airflow Kafka real-time data governance data security compliance mentorship Diego Rodrigues Tableau Power BI Snowflake Informatica Alation Talend Apache Flink Jupyter Notebooks DevOps Databricks Cloudera Hortonworks Teradata IBM Cloud Oracle Cloud Salesforce SAP HANA ElasticSearch Redis Kubernetes Docker Jenkins GitHub GitLab Continuous Integration Continuous Deployment CI/CD digital transformation predictive analysis business intelligence IoT Internet of Things smart cities connected health Industry 4.0 fintechs retail education marketing competitive intelligence data science automated testing custom reports operational efficiency Python Java Linux Kali Linux HTML ASP.NET Ada Assembly Language BASIC Borland Delphi C C# C++ CSS Cobol Compilers DHTML Fortran General HTML Java JavaScript LISP PHP Pascal Perl Prolog RPG Ruby SQL Swift UML Elixir Haskell VBScript Visual Basic XHTML XML XSL Django Flask Ruby on Rails Angular React Vue.js Node.js Laravel Spring Hibernate .NET Core Express.js TensorFlow PyTorch Jupyter Notebook Keras Bootstrap Foundation jQuery SASS LESS Scala Groovy MATLAB R Objective-C Rust Go Kotlin TypeScript Elixir Dart SwiftUI Xamarin React Native NumPy Pandas SciPy Matplotlib Seaborn D3.js OpenCV NLTK PySpark BeautifulSoup Scikit-learn XGBoost CatBoost LightGBM FastAPI Celery Tornado Redis RabbitMQ Kubernetes Docker Jenkins Terraform Ansible Vagrant GitHub GitLab CircleCI Travis CI Linear Regression Logistic Regression Decision Trees Random Forests FastAPI AI ML K-Means Clustering Support Vector Tornado Machines Gradient Boosting Neural Networks LSTMs CNNs GANs ANDROID IOS MACOS WINDOWS Nmap Metasploit Framework Wireshark Aircrack-ng John the Ripper Burp Suite SQLmap Maltego Autopsy Volatility IDA Pro OllyDbg YARA Snort ClamAV iOS Netcat Tcpdump Foremost Cuckoo Sandbox Fierce HTTrack Kismet Hydra Nikto OpenVAS Nessus ZAP Radare2 Binwalk GDB OWASP Amass Dnsenum Dirbuster Wpscan Responder Setoolkit Searchsploit Recon-ng BeEF aws google cloud ibm azure databricks nvidia meta x Power BI IoT CI/CD Hadoop Spark Pandas NumPy Dask SQLAlchemy web scraping mysql big data science openai chatgpt Handler RunOnUiThread()Qiskit Q# Cassandra Bigtable VIRUS MALWARE docker kubernetes Kali Linux Nmap Metasploit Wireshark information security pen test cybersecurity Linux distributions ethical hacking vulnerability analysis system exploration wireless attacks web application security malware analysis social engineering Android iOS Social Engineering Toolkit SET computer science IT professionals cybersecurity careers cybersecurity expertise cybersecurity library cybersecurity training Linux operating systems cybersecurity tools ethical hacking tools security testing penetration test cycle security concepts mobile security cybersecurity fundamentals cybersecurity techniques skills cybersecurity industry global cybersecurity trends Kali Linux tools education innovation penetration test tools best practices global companies cybersecurity solutions IBM Google Microsoft AWS Cisco Oracle consulting cybersecurity framework network security courses cybersecurity tutorials Linux security challenges landscape cloud security threats compliance research technology React Native Flutter Ionic Xamarin HTML CSS JavaScript Java Kotlin Swift Objective-C Web Views Capacitor APIs REST GraphQL Firebase Redux Provider Angular Vue.js Bitrise GitHub Actions Material Design Cupertino Fastlane Appium Selenium Jest CodePush Firebase Expo Visual Studio C# .NET Azure Google Play App Store CodePush IoT AR VR
MASTER PYTHON DATA SCIENCE Wiith AI Virtual Tutoring*
Author: Diego Rodrigues
Publisher: Diego Rodrigues
ISBN:
Category : Business & Economics
Languages : en
Pages : 143
Book Description
Imagine acquiring a complete book and, as a bonus, receiving access to a 24/7 AI-assisted Virtual Tutoring to personalize your learning journey, knowledge consolidation, and mentorship for the development and implementation of real projects... ... Welcome to the Revolution of Personalized Learning with AI-Assisted Virtual Tutoring! Discover "MASTER PYTHON: DATA SCIENCE From Fundamentals to Advanced Applications with AI Virtual Tutoring" the essential guide for professionals and enthusiasts who wish to master data science with Python. This innovative manual, written by Diego Rodrigues, an author with over 140 titles published in six languages, combines high-quality content with the advanced technology of IAGO, a virtual tutor developed and hosted on the OpenAI platform. The book begins with a comprehensive introduction to data science, highlighting the importance of the field and the crucial role Python plays. Next, it covers the fundamentals of Python, including basic syntax, data structures, and control flow, laying a solid foundation for subsequent chapters. You will learn essential data manipulation and cleaning techniques using libraries like Pandas and NumPy, ensuring your data is ready for analysis. Then, you will explore exploratory data analysis (EDA) with tools like Matplotlib and Seaborn to discover valuable patterns and insights. Data visualization is deepened with the use of Plotly to create interactive charts and Dash to develop dynamic dashboards. The book progresses to machine learning, introducing basic concepts and types of learning, followed by data preparation and model implementation with Scikit-Learn. Linear and polynomial regression techniques are explained in detail, along with model performance evaluation. You will also delve into advanced machine learning with chapters on classification, clustering, and dimensionality reduction. Natural language processing (NLP) techniques are covered, using libraries like NLTK and SpaCy. The deep learning section covers everything from basic neural networks to advanced applications with TensorFlow and Keras, including convolutional neural networks (CNNs) and recurrent neural networks (RNNs). The book also explores big data, teaching how to work with large volumes of data using Hadoop and Spark with Python. It concludes with a comprehensive guide on conducting a data science project from start to finish and discusses ethics and responsibility in data science, addressing best practices and regulations. Take advantage of the Limited Time Launch Promotional Price! Open the book sample and discover how to join the select club of cutting-edge technology professionals. Take this unique opportunity and achieve your goals! TAGS data science manipulation data analysis visualization Pandas NumPy Matplotlib Seaborn Plotly Dash machine learning deep learning Scikit-Learn TensorFlow Keras big data Hadoop Spark exploratory analysis EDA models regression classification clustering NLP natural language processing convolutional neural networks CNNs recurrent RNNs supervised learning unsupervised learning reinforcement learning digital transformation predictive analysis artificial intelligence Diego Rodrigues applied data science real projects virtual tutoring OpenAI IAGO task automation modeling prediction advanced techniques SQL time series analysis social network analysis interactive data visualization data storytelling Python programming data science ethics data privacy regulations cybersecurity data collection data processing data engineering statistical analysis real-time visualization automated reports data-driven aws google ibm meta azure Python Java Linux Kali Linux HTML ASP.NET Ada Assembly Language BASIC Borland Delphi C C# C++ CSS Cobol Compilers DHTML Fortran General HTML Java JavaScript LISP PHP Pascal Perl Prolog RPG Ruby SQL Swift UML Elixir Haskell VBScript Visual Basic XHTML XML XSL Django Flask Ruby on Rails Angular React Vue.js Node.js Laravel Spring Hibernate .NET Core Express.js TensorFlow PyTorch Jupyter Notebook Keras Bootstrap Foundation jQuery SASS LESS Scala Groovy MATLAB R Objective-C Rust Go Kotlin TypeScript Elixir Dart SwiftUI Xamarin React Native NumPy Pandas SciPy Matplotlib Seaborn D3.js OpenCV NLTK PySpark BeautifulSoup Scikit-learn XGBoost CatBoost LightGBM FastAPI Celery Tornado Redis RabbitMQ Kubernetes Docker Jenkins Terraform Ansible Vagrant GitHub GitLab CircleCI Travis CI Linear Regression Logistic Regression Decision Trees Random Forests FastAPI AI ML K-Means Clustering Support Vector Tornado Machines Gradient Boosting Neural Networks LSTMs CNNs GANs ANDROID IOS MACOS WINDOWS Nmap Metasploit Framework Wireshark Aircrack-ng John the Ripper Burp Suite SQLmap Maltego Autopsy Volatility IDA Pro OllyDbg YARA Snort ClamAV iOS Netcat Tcpdump Foremost Cuckoo Sandbox Fierce HTTrack Kismet Hydra Nikto OpenVAS Nessus ZAP Radare2 Binwalk GDB OWASP Amass Dnsenum Dirbuster Wpscan Responder Setoolkit Searchsploit Recon-ng BeEF aws google cloud ibm azure databricks nvidia meta x Power BI IoT CI/CD Hadoop Spark Pandas NumPy Dask SQLAlchemy web scraping mysql big data science openai chatgpt Handler RunOnUiThread()Qiskit Q# Cassandra Bigtable VIRUS MALWARE docker kubernetes Kali Linux Nmap Metasploit Wireshark information security pen test cybersecurity Linux distributions ethical hacking vulnerability analysis system exploration wireless attacks web application security malware analysis social engineering Android iOS Social Engineering Toolkit SET computer science IT professionals cybersecurity careers cybersecurity expertise cybersecurity library cybersecurity training Linux operating systems cybersecurity tools ethical hacking tools security testing penetration test cycle security concepts mobile security cybersecurity fundamentals cybersecurity techniques skills cybersecurity industry global cybersecurity trends Kali Linux tools education innovation penetration test tools best practices global companies cybersecurity solutions IBM Google Microsoft AWS Cisco Oracle consulting cybersecurity framework network security courses cybersecurity tutorials Linux security challenges landscape cloud security threats compliance research technology React Native Flutter Ionic Xamarin HTML CSS JavaScript Java Kotlin Swift Objective-C Web Views Capacitor APIs REST GraphQL Firebase Redux Provider Angular Vue.js Bitrise GitHub Actions Material Design Cupertino Fastlane Appium Selenium Jest CodePush Firebase Expo Visual Studio C# .NET Azure Google Play App Store CodePush IoT AR VR
Publisher: Diego Rodrigues
ISBN:
Category : Business & Economics
Languages : en
Pages : 143
Book Description
Imagine acquiring a complete book and, as a bonus, receiving access to a 24/7 AI-assisted Virtual Tutoring to personalize your learning journey, knowledge consolidation, and mentorship for the development and implementation of real projects... ... Welcome to the Revolution of Personalized Learning with AI-Assisted Virtual Tutoring! Discover "MASTER PYTHON: DATA SCIENCE From Fundamentals to Advanced Applications with AI Virtual Tutoring" the essential guide for professionals and enthusiasts who wish to master data science with Python. This innovative manual, written by Diego Rodrigues, an author with over 140 titles published in six languages, combines high-quality content with the advanced technology of IAGO, a virtual tutor developed and hosted on the OpenAI platform. The book begins with a comprehensive introduction to data science, highlighting the importance of the field and the crucial role Python plays. Next, it covers the fundamentals of Python, including basic syntax, data structures, and control flow, laying a solid foundation for subsequent chapters. You will learn essential data manipulation and cleaning techniques using libraries like Pandas and NumPy, ensuring your data is ready for analysis. Then, you will explore exploratory data analysis (EDA) with tools like Matplotlib and Seaborn to discover valuable patterns and insights. Data visualization is deepened with the use of Plotly to create interactive charts and Dash to develop dynamic dashboards. The book progresses to machine learning, introducing basic concepts and types of learning, followed by data preparation and model implementation with Scikit-Learn. Linear and polynomial regression techniques are explained in detail, along with model performance evaluation. You will also delve into advanced machine learning with chapters on classification, clustering, and dimensionality reduction. Natural language processing (NLP) techniques are covered, using libraries like NLTK and SpaCy. The deep learning section covers everything from basic neural networks to advanced applications with TensorFlow and Keras, including convolutional neural networks (CNNs) and recurrent neural networks (RNNs). The book also explores big data, teaching how to work with large volumes of data using Hadoop and Spark with Python. It concludes with a comprehensive guide on conducting a data science project from start to finish and discusses ethics and responsibility in data science, addressing best practices and regulations. Take advantage of the Limited Time Launch Promotional Price! Open the book sample and discover how to join the select club of cutting-edge technology professionals. Take this unique opportunity and achieve your goals! TAGS data science manipulation data analysis visualization Pandas NumPy Matplotlib Seaborn Plotly Dash machine learning deep learning Scikit-Learn TensorFlow Keras big data Hadoop Spark exploratory analysis EDA models regression classification clustering NLP natural language processing convolutional neural networks CNNs recurrent RNNs supervised learning unsupervised learning reinforcement learning digital transformation predictive analysis artificial intelligence Diego Rodrigues applied data science real projects virtual tutoring OpenAI IAGO task automation modeling prediction advanced techniques SQL time series analysis social network analysis interactive data visualization data storytelling Python programming data science ethics data privacy regulations cybersecurity data collection data processing data engineering statistical analysis real-time visualization automated reports data-driven aws google ibm meta azure Python Java Linux Kali Linux HTML ASP.NET Ada Assembly Language BASIC Borland Delphi C C# C++ CSS Cobol Compilers DHTML Fortran General HTML Java JavaScript LISP PHP Pascal Perl Prolog RPG Ruby SQL Swift UML Elixir Haskell VBScript Visual Basic XHTML XML XSL Django Flask Ruby on Rails Angular React Vue.js Node.js Laravel Spring Hibernate .NET Core Express.js TensorFlow PyTorch Jupyter Notebook Keras Bootstrap Foundation jQuery SASS LESS Scala Groovy MATLAB R Objective-C Rust Go Kotlin TypeScript Elixir Dart SwiftUI Xamarin React Native NumPy Pandas SciPy Matplotlib Seaborn D3.js OpenCV NLTK PySpark BeautifulSoup Scikit-learn XGBoost CatBoost LightGBM FastAPI Celery Tornado Redis RabbitMQ Kubernetes Docker Jenkins Terraform Ansible Vagrant GitHub GitLab CircleCI Travis CI Linear Regression Logistic Regression Decision Trees Random Forests FastAPI AI ML K-Means Clustering Support Vector Tornado Machines Gradient Boosting Neural Networks LSTMs CNNs GANs ANDROID IOS MACOS WINDOWS Nmap Metasploit Framework Wireshark Aircrack-ng John the Ripper Burp Suite SQLmap Maltego Autopsy Volatility IDA Pro OllyDbg YARA Snort ClamAV iOS Netcat Tcpdump Foremost Cuckoo Sandbox Fierce HTTrack Kismet Hydra Nikto OpenVAS Nessus ZAP Radare2 Binwalk GDB OWASP Amass Dnsenum Dirbuster Wpscan Responder Setoolkit Searchsploit Recon-ng BeEF aws google cloud ibm azure databricks nvidia meta x Power BI IoT CI/CD Hadoop Spark Pandas NumPy Dask SQLAlchemy web scraping mysql big data science openai chatgpt Handler RunOnUiThread()Qiskit Q# Cassandra Bigtable VIRUS MALWARE docker kubernetes Kali Linux Nmap Metasploit Wireshark information security pen test cybersecurity Linux distributions ethical hacking vulnerability analysis system exploration wireless attacks web application security malware analysis social engineering Android iOS Social Engineering Toolkit SET computer science IT professionals cybersecurity careers cybersecurity expertise cybersecurity library cybersecurity training Linux operating systems cybersecurity tools ethical hacking tools security testing penetration test cycle security concepts mobile security cybersecurity fundamentals cybersecurity techniques skills cybersecurity industry global cybersecurity trends Kali Linux tools education innovation penetration test tools best practices global companies cybersecurity solutions IBM Google Microsoft AWS Cisco Oracle consulting cybersecurity framework network security courses cybersecurity tutorials Linux security challenges landscape cloud security threats compliance research technology React Native Flutter Ionic Xamarin HTML CSS JavaScript Java Kotlin Swift Objective-C Web Views Capacitor APIs REST GraphQL Firebase Redux Provider Angular Vue.js Bitrise GitHub Actions Material Design Cupertino Fastlane Appium Selenium Jest CodePush Firebase Expo Visual Studio C# .NET Azure Google Play App Store CodePush IoT AR VR
MASTER PYTHON CYBERSECURITY with AI Virtual Tutoring*
Author: Diego Rodrigues
Publisher: Diego Rodrigues
ISBN:
Category : Business & Economics
Languages : en
Pages : 147
Book Description
Imagine acquiring a book and, as a bonus, getting access to a 24/7 AI-assisted Virtual Tutoring to personalize your learning journey, consolidate knowledge, and receive mentorship for developing and implementing real projects... ... Welcome to the Revolution of Personalized Learning with AI-Assisted Virtual Tutoring! Discover "MASTER PYTHON CYBERSECURITY: From Fundamentals to Advanced Applications with AI Virtual Tutoring," the essential guide for professionals and enthusiasts aiming to master automation and cybersecurity with Python. This innovative manual, written by Diego Rodrigues, a renowned author with over 140 titles published in six languages, combines high-quality content with advanced technology from IAGO, a virtual tutor developed and hosted on the OpenAI platform. Innovative Features: - Personalized Learning: IAGO adapts the content according to your knowledge level, offering detailed explanations and personalized exercises. - Immediate Feedback: Receive corrections and suggestions in real-time, accelerating your learning process. - Interactivity and Engagement: Interact with the tutor via text or voice, making the study more dynamic and motivating. - Mentorship for Project Development: Get practical guidance to develop and implement real projects, applying the knowledge acquired. - Total Flexibility: Access the tutor anywhere and anytime, whether on desktop, notebook, or smartphone with web access. Take Advantage of the Limited Time Launch Promotional Price! Don't miss the opportunity to transform your learning journey with an innovative and effective method. This book has been carefully structured to meet your needs and exceed your expectations, ensuring you are prepared to face challenges and seize opportunities in the field of automation and cybersecurity. Open the book sample and discover how to join the select club of cutting-edge technology professionals. Take advantage of this unique opportunity and achieve your goals! TAGS hacking automation cybersecurity Scapy Requests BeautifulSoup Nmap Metasploit ethical hacking penetration testing forensic analysis vulnerabilities network security encryption cyber attacks data protection network monitoring security audit advanced techniques cyber defense information security system security invasion protection Diego Rodrigues CyberExtreme malware virus phishing DDoS attacks artificial intelligence machine learning blockchain DevOps DevSecOps SCADA security industry 4.0 connected health smart cities vulnerability analysis web application security SQL Injection XSS CSRF patch management software update password policy multi-factor authentication MFA encryption AES RSA ECC cloud security AWS Microsoft Azure Google Cloud IBM Cloud Palo Alto Networks Cisco Systems Check Point Symantec McAfee Splunk CrowdStrike Fortinet Tenable Nessus OpenVAS Wi-Fi security LTE 5G endpoints APIs osint encryption at rest risk-based risk management log analysis continuous monitoring threat response behavior analysis security tools best practices innovation digital transformation big data hack Python Java Linux Kali Linux HTML ASP.NET Ada Assembly Language BASIC Borland Delphi C C# C++ CSS Cobol Compilers DHTML Fortran General HTML Java JavaScript LISP PHP Pascal Perl Prolog RPG Ruby SQL Swift UML Elixir Haskell VBScript Visual Basic XHTML XML XSL Django Flask Ruby on Rails Angular React Vue.js Node.js Laravel Spring Hibernate .NET Core Express.js TensorFlow PyTorch Jupyter Notebook Keras Bootstrap Foundation jQuery SASS LESS Scala Groovy MATLAB R Objective-C Rust Go Kotlin TypeScript Elixir Dart SwiftUI Xamarin React Native NumPy Pandas SciPy Matplotlib Seaborn D3.js OpenCV NLTK PySpark BeautifulSoup Scikit-learn XGBoost CatBoost LightGBM FastAPI Celery Tornado Redis RabbitMQ Kubernetes Docker Jenkins Terraform Ansible Vagrant GitHub GitLab CircleCI Travis CI Linear Regression Logistic Regression Decision Trees Random Forests FastAPI AI ML K-Means Clustering Support Vector Tornado Machines Gradient Boosting Neural Networks LSTMs CNNs GANs ANDROID IOS MACOS WINDOWS Nmap Metasploit Framework Wireshark Aircrack-ng John the Ripper Burp Suite SQLmap Maltego Autopsy Volatility IDA Pro OllyDbg YARA Snort ClamAV iOS Netcat Tcpdump Foremost Cuckoo Sandbox Fierce HTTrack Kismet Hydra Nikto OpenVAS Nessus ZAP Radare2 Binwalk GDB OWASP Amass Dnsenum Dirbuster Wpscan Responder Setoolkit Searchsploit Recon-ng BeEF aws google cloud ibm azure databricks nvidia meta x Power BI IoT CI/CD Hadoop Spark Pandas NumPy Dask SQLAlchemy web scraping mysql big data science openai chatgpt Handler RunOnUiThread()Qiskit Q# Cassandra Bigtable VIRUS MALWARE docker kubernetes Kali Linux Nmap Metasploit Wireshark information security pen test cybersecurity Linux distributions ethical hacking vulnerability analysis system exploration wireless attacks web application security malware analysis social engineering Android iOS Social Engineering Toolkit SET computer science IT professionals cybersecurity careers cybersecurity expertise cybersecurity library cybersecurity training Linux operating systems cybersecurity tools ethical hacking tools security testing penetration test cycle security concepts mobile security cybersecurity fundamentals cybersecurity techniques skills cybersecurity industry global cybersecurity trends Kali Linux tools education innovation penetration test tools best practices global companies cybersecurity solutions IBM Google Microsoft AWS Cisco Oracle consulting cybersecurity framework network security courses cybersecurity tutorials Linux security challenges landscape cloud security threats compliance research technology React Native Flutter Ionic Xamarin HTML CSS JavaScript Java Kotlin Swift Objective-C Web Views Capacitor APIs REST GraphQL Firebase Redux Provider Angular Vue.js Bitrise GitHub Actions Material Design Cupertino Fastlane Appium Selenium Jest CodePush Firebase Expo Visual Studio C# .NET Azure Google Play App Store CodePush IoT AR VR GITHUB
Publisher: Diego Rodrigues
ISBN:
Category : Business & Economics
Languages : en
Pages : 147
Book Description
Imagine acquiring a book and, as a bonus, getting access to a 24/7 AI-assisted Virtual Tutoring to personalize your learning journey, consolidate knowledge, and receive mentorship for developing and implementing real projects... ... Welcome to the Revolution of Personalized Learning with AI-Assisted Virtual Tutoring! Discover "MASTER PYTHON CYBERSECURITY: From Fundamentals to Advanced Applications with AI Virtual Tutoring," the essential guide for professionals and enthusiasts aiming to master automation and cybersecurity with Python. This innovative manual, written by Diego Rodrigues, a renowned author with over 140 titles published in six languages, combines high-quality content with advanced technology from IAGO, a virtual tutor developed and hosted on the OpenAI platform. Innovative Features: - Personalized Learning: IAGO adapts the content according to your knowledge level, offering detailed explanations and personalized exercises. - Immediate Feedback: Receive corrections and suggestions in real-time, accelerating your learning process. - Interactivity and Engagement: Interact with the tutor via text or voice, making the study more dynamic and motivating. - Mentorship for Project Development: Get practical guidance to develop and implement real projects, applying the knowledge acquired. - Total Flexibility: Access the tutor anywhere and anytime, whether on desktop, notebook, or smartphone with web access. Take Advantage of the Limited Time Launch Promotional Price! Don't miss the opportunity to transform your learning journey with an innovative and effective method. This book has been carefully structured to meet your needs and exceed your expectations, ensuring you are prepared to face challenges and seize opportunities in the field of automation and cybersecurity. Open the book sample and discover how to join the select club of cutting-edge technology professionals. Take advantage of this unique opportunity and achieve your goals! TAGS hacking automation cybersecurity Scapy Requests BeautifulSoup Nmap Metasploit ethical hacking penetration testing forensic analysis vulnerabilities network security encryption cyber attacks data protection network monitoring security audit advanced techniques cyber defense information security system security invasion protection Diego Rodrigues CyberExtreme malware virus phishing DDoS attacks artificial intelligence machine learning blockchain DevOps DevSecOps SCADA security industry 4.0 connected health smart cities vulnerability analysis web application security SQL Injection XSS CSRF patch management software update password policy multi-factor authentication MFA encryption AES RSA ECC cloud security AWS Microsoft Azure Google Cloud IBM Cloud Palo Alto Networks Cisco Systems Check Point Symantec McAfee Splunk CrowdStrike Fortinet Tenable Nessus OpenVAS Wi-Fi security LTE 5G endpoints APIs osint encryption at rest risk-based risk management log analysis continuous monitoring threat response behavior analysis security tools best practices innovation digital transformation big data hack Python Java Linux Kali Linux HTML ASP.NET Ada Assembly Language BASIC Borland Delphi C C# C++ CSS Cobol Compilers DHTML Fortran General HTML Java JavaScript LISP PHP Pascal Perl Prolog RPG Ruby SQL Swift UML Elixir Haskell VBScript Visual Basic XHTML XML XSL Django Flask Ruby on Rails Angular React Vue.js Node.js Laravel Spring Hibernate .NET Core Express.js TensorFlow PyTorch Jupyter Notebook Keras Bootstrap Foundation jQuery SASS LESS Scala Groovy MATLAB R Objective-C Rust Go Kotlin TypeScript Elixir Dart SwiftUI Xamarin React Native NumPy Pandas SciPy Matplotlib Seaborn D3.js OpenCV NLTK PySpark BeautifulSoup Scikit-learn XGBoost CatBoost LightGBM FastAPI Celery Tornado Redis RabbitMQ Kubernetes Docker Jenkins Terraform Ansible Vagrant GitHub GitLab CircleCI Travis CI Linear Regression Logistic Regression Decision Trees Random Forests FastAPI AI ML K-Means Clustering Support Vector Tornado Machines Gradient Boosting Neural Networks LSTMs CNNs GANs ANDROID IOS MACOS WINDOWS Nmap Metasploit Framework Wireshark Aircrack-ng John the Ripper Burp Suite SQLmap Maltego Autopsy Volatility IDA Pro OllyDbg YARA Snort ClamAV iOS Netcat Tcpdump Foremost Cuckoo Sandbox Fierce HTTrack Kismet Hydra Nikto OpenVAS Nessus ZAP Radare2 Binwalk GDB OWASP Amass Dnsenum Dirbuster Wpscan Responder Setoolkit Searchsploit Recon-ng BeEF aws google cloud ibm azure databricks nvidia meta x Power BI IoT CI/CD Hadoop Spark Pandas NumPy Dask SQLAlchemy web scraping mysql big data science openai chatgpt Handler RunOnUiThread()Qiskit Q# Cassandra Bigtable VIRUS MALWARE docker kubernetes Kali Linux Nmap Metasploit Wireshark information security pen test cybersecurity Linux distributions ethical hacking vulnerability analysis system exploration wireless attacks web application security malware analysis social engineering Android iOS Social Engineering Toolkit SET computer science IT professionals cybersecurity careers cybersecurity expertise cybersecurity library cybersecurity training Linux operating systems cybersecurity tools ethical hacking tools security testing penetration test cycle security concepts mobile security cybersecurity fundamentals cybersecurity techniques skills cybersecurity industry global cybersecurity trends Kali Linux tools education innovation penetration test tools best practices global companies cybersecurity solutions IBM Google Microsoft AWS Cisco Oracle consulting cybersecurity framework network security courses cybersecurity tutorials Linux security challenges landscape cloud security threats compliance research technology React Native Flutter Ionic Xamarin HTML CSS JavaScript Java Kotlin Swift Objective-C Web Views Capacitor APIs REST GraphQL Firebase Redux Provider Angular Vue.js Bitrise GitHub Actions Material Design Cupertino Fastlane Appium Selenium Jest CodePush Firebase Expo Visual Studio C# .NET Azure Google Play App Store CodePush IoT AR VR GITHUB
Artificial Intelligence with Python
Author: Prateek Joshi
Publisher: Packt Publishing Ltd
ISBN: 1786469677
Category : Computers
Languages : en
Pages : 437
Book Description
Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.
Publisher: Packt Publishing Ltd
ISBN: 1786469677
Category : Computers
Languages : en
Pages : 437
Book Description
Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.
Python for Data Analysis
Author: Wes McKinney
Publisher: "O'Reilly Media, Inc."
ISBN: 1491957611
Category : Computers
Languages : en
Pages : 553
Book Description
Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples
Publisher: "O'Reilly Media, Inc."
ISBN: 1491957611
Category : Computers
Languages : en
Pages : 553
Book Description
Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples
Python for Everybody
Author: Charles R. Severance
Publisher:
ISBN: 9781530051120
Category :
Languages : en
Pages : 242
Book Description
Python for Everybody is designed to introduce students to programming and software development through the lens of exploring data. You can think of the Python programming language as your tool to solve data problems that are beyond the capability of a spreadsheet.Python is an easy to use and easy to learn programming language that is freely available on Macintosh, Windows, or Linux computers. So once you learn Python you can use it for the rest of your career without needing to purchase any software.This book uses the Python 3 language. The earlier Python 2 version of this book is titled "Python for Informatics: Exploring Information".There are free downloadable electronic copies of this book in various formats and supporting materials for the book at www.pythonlearn.com. The course materials are available to you under a Creative Commons License so you can adapt them to teach your own Python course.
Publisher:
ISBN: 9781530051120
Category :
Languages : en
Pages : 242
Book Description
Python for Everybody is designed to introduce students to programming and software development through the lens of exploring data. You can think of the Python programming language as your tool to solve data problems that are beyond the capability of a spreadsheet.Python is an easy to use and easy to learn programming language that is freely available on Macintosh, Windows, or Linux computers. So once you learn Python you can use it for the rest of your career without needing to purchase any software.This book uses the Python 3 language. The earlier Python 2 version of this book is titled "Python for Informatics: Exploring Information".There are free downloadable electronic copies of this book in various formats and supporting materials for the book at www.pythonlearn.com. The course materials are available to you under a Creative Commons License so you can adapt them to teach your own Python course.
Data Science from Scratch
Author: Joel Grus
Publisher: "O'Reilly Media, Inc."
ISBN: 1491904399
Category : Computers
Languages : en
Pages : 336
Book Description
Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases
Publisher: "O'Reilly Media, Inc."
ISBN: 1491904399
Category : Computers
Languages : en
Pages : 336
Book Description
Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases
Hands-On Data Science and Python Machine Learning
Author: Frank Kane
Publisher: Packt Publishing Ltd
ISBN: 1787280225
Category : Computers
Languages : en
Pages : 415
Book Description
This book covers the fundamentals of machine learning with Python in a concise and dynamic manner. It covers data mining and large-scale machine learning using Apache Spark. About This Book Take your first steps in the world of data science by understanding the tools and techniques of data analysis Train efficient Machine Learning models in Python using the supervised and unsupervised learning methods Learn how to use Apache Spark for processing Big Data efficiently Who This Book Is For If you are a budding data scientist or a data analyst who wants to analyze and gain actionable insights from data using Python, this book is for you. Programmers with some experience in Python who want to enter the lucrative world of Data Science will also find this book to be very useful, but you don't need to be an expert Python coder or mathematician to get the most from this book. What You Will Learn Learn how to clean your data and ready it for analysis Implement the popular clustering and regression methods in Python Train efficient machine learning models using decision trees and random forests Visualize the results of your analysis using Python's Matplotlib library Use Apache Spark's MLlib package to perform machine learning on large datasets In Detail Join Frank Kane, who worked on Amazon and IMDb's machine learning algorithms, as he guides you on your first steps into the world of data science. Hands-On Data Science and Python Machine Learning gives you the tools that you need to understand and explore the core topics in the field, and the confidence and practice to build and analyze your own machine learning models. With the help of interesting and easy-to-follow practical examples, Frank Kane explains potentially complex topics such as Bayesian methods and K-means clustering in a way that anybody can understand them. Based on Frank's successful data science course, Hands-On Data Science and Python Machine Learning empowers you to conduct data analysis and perform efficient machine learning using Python. Let Frank help you unearth the value in your data using the various data mining and data analysis techniques available in Python, and to develop efficient predictive models to predict future results. You will also learn how to perform large-scale machine learning on Big Data using Apache Spark. The book covers preparing your data for analysis, training machine learning models, and visualizing the final data analysis. Style and approach This comprehensive book is a perfect blend of theory and hands-on code examples in Python which can be used for your reference at any time.
Publisher: Packt Publishing Ltd
ISBN: 1787280225
Category : Computers
Languages : en
Pages : 415
Book Description
This book covers the fundamentals of machine learning with Python in a concise and dynamic manner. It covers data mining and large-scale machine learning using Apache Spark. About This Book Take your first steps in the world of data science by understanding the tools and techniques of data analysis Train efficient Machine Learning models in Python using the supervised and unsupervised learning methods Learn how to use Apache Spark for processing Big Data efficiently Who This Book Is For If you are a budding data scientist or a data analyst who wants to analyze and gain actionable insights from data using Python, this book is for you. Programmers with some experience in Python who want to enter the lucrative world of Data Science will also find this book to be very useful, but you don't need to be an expert Python coder or mathematician to get the most from this book. What You Will Learn Learn how to clean your data and ready it for analysis Implement the popular clustering and regression methods in Python Train efficient machine learning models using decision trees and random forests Visualize the results of your analysis using Python's Matplotlib library Use Apache Spark's MLlib package to perform machine learning on large datasets In Detail Join Frank Kane, who worked on Amazon and IMDb's machine learning algorithms, as he guides you on your first steps into the world of data science. Hands-On Data Science and Python Machine Learning gives you the tools that you need to understand and explore the core topics in the field, and the confidence and practice to build and analyze your own machine learning models. With the help of interesting and easy-to-follow practical examples, Frank Kane explains potentially complex topics such as Bayesian methods and K-means clustering in a way that anybody can understand them. Based on Frank's successful data science course, Hands-On Data Science and Python Machine Learning empowers you to conduct data analysis and perform efficient machine learning using Python. Let Frank help you unearth the value in your data using the various data mining and data analysis techniques available in Python, and to develop efficient predictive models to predict future results. You will also learn how to perform large-scale machine learning on Big Data using Apache Spark. The book covers preparing your data for analysis, training machine learning models, and visualizing the final data analysis. Style and approach This comprehensive book is a perfect blend of theory and hands-on code examples in Python which can be used for your reference at any time.
Machine Learning in Action
Author: Peter Harrington
Publisher: Simon and Schuster
ISBN: 1638352453
Category : Computers
Languages : en
Pages : 558
Book Description
Summary Machine Learning in Action is unique book that blends the foundational theories of machine learning with the practical realities of building tools for everyday data analysis. You'll use the flexible Python programming language to build programs that implement algorithms for data classification, forecasting, recommendations, and higher-level features like summarization and simplification. About the Book A machine is said to learn when its performance improves with experience. Learning requires algorithms and programs that capture data and ferret out the interestingor useful patterns. Once the specialized domain of analysts and mathematicians, machine learning is becoming a skill needed by many. Machine Learning in Action is a clearly written tutorial for developers. It avoids academic language and takes you straight to the techniques you'll use in your day-to-day work. Many (Python) examples present the core algorithms of statistical data processing, data analysis, and data visualization in code you can reuse. You'll understand the concepts and how they fit in with tactical tasks like classification, forecasting, recommendations, and higher-level features like summarization and simplification. Readers need no prior experience with machine learning or statistical processing. Familiarity with Python is helpful. Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book. What's Inside A no-nonsense introduction Examples showing common ML tasks Everyday data analysis Implementing classic algorithms like Apriori and Adaboos Table of Contents PART 1 CLASSIFICATION Machine learning basics Classifying with k-Nearest Neighbors Splitting datasets one feature at a time: decision trees Classifying with probability theory: naïve Bayes Logistic regression Support vector machines Improving classification with the AdaBoost meta algorithm PART 2 FORECASTING NUMERIC VALUES WITH REGRESSION Predicting numeric values: regression Tree-based regression PART 3 UNSUPERVISED LEARNING Grouping unlabeled items using k-means clustering Association analysis with the Apriori algorithm Efficiently finding frequent itemsets with FP-growth PART 4 ADDITIONAL TOOLS Using principal component analysis to simplify data Simplifying data with the singular value decomposition Big data and MapReduce
Publisher: Simon and Schuster
ISBN: 1638352453
Category : Computers
Languages : en
Pages : 558
Book Description
Summary Machine Learning in Action is unique book that blends the foundational theories of machine learning with the practical realities of building tools for everyday data analysis. You'll use the flexible Python programming language to build programs that implement algorithms for data classification, forecasting, recommendations, and higher-level features like summarization and simplification. About the Book A machine is said to learn when its performance improves with experience. Learning requires algorithms and programs that capture data and ferret out the interestingor useful patterns. Once the specialized domain of analysts and mathematicians, machine learning is becoming a skill needed by many. Machine Learning in Action is a clearly written tutorial for developers. It avoids academic language and takes you straight to the techniques you'll use in your day-to-day work. Many (Python) examples present the core algorithms of statistical data processing, data analysis, and data visualization in code you can reuse. You'll understand the concepts and how they fit in with tactical tasks like classification, forecasting, recommendations, and higher-level features like summarization and simplification. Readers need no prior experience with machine learning or statistical processing. Familiarity with Python is helpful. Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book. What's Inside A no-nonsense introduction Examples showing common ML tasks Everyday data analysis Implementing classic algorithms like Apriori and Adaboos Table of Contents PART 1 CLASSIFICATION Machine learning basics Classifying with k-Nearest Neighbors Splitting datasets one feature at a time: decision trees Classifying with probability theory: naïve Bayes Logistic regression Support vector machines Improving classification with the AdaBoost meta algorithm PART 2 FORECASTING NUMERIC VALUES WITH REGRESSION Predicting numeric values: regression Tree-based regression PART 3 UNSUPERVISED LEARNING Grouping unlabeled items using k-means clustering Association analysis with the Apriori algorithm Efficiently finding frequent itemsets with FP-growth PART 4 ADDITIONAL TOOLS Using principal component analysis to simplify data Simplifying data with the singular value decomposition Big data and MapReduce
Introduction to Artificial Intelligence
Author: Simplilearn
Publisher: IndraStra Global
ISBN:
Category : Computers
Languages : en
Pages : 26
Book Description
This AI beginner’s guide aims to take the readers through the current AI landscape, provides the key fundamentals and terminologies of AI, and offers practical guidelines on why and how you can be a part of the AI revolution, and also the ways in which you can scale up your AI career.
Publisher: IndraStra Global
ISBN:
Category : Computers
Languages : en
Pages : 26
Book Description
This AI beginner’s guide aims to take the readers through the current AI landscape, provides the key fundamentals and terminologies of AI, and offers practical guidelines on why and how you can be a part of the AI revolution, and also the ways in which you can scale up your AI career.