Massively Parallel Processing Applications and Development

Massively Parallel Processing Applications and Development PDF Author: L. Dekker
Publisher: Elsevier
ISBN: 1483290433
Category : Computers
Languages : en
Pages : 996

Get Book Here

Book Description
The contributions of a diverse selection of international hardware and software specialists are assimilated in this book's exploration of the development of massively parallel processing (MPP). The emphasis is placed on industrial applications and collaboration with users and suppliers from within the industrial community consolidates the scope of the publication. From a practical point of view, massively parallel data processing is a vital step to further innovation in all areas where large amounts of data must be processed in parallel or in a distributed manner, e.g. fluid dynamics, meteorology, seismics, molecular engineering, image processing, parallel data base processing. MPP technology can make the speed of computation higher and substantially reduce the computational costs. However, to achieve these features, the MPP software has to be developed further to create user-friendly programming systems and to become transparent for present-day computer software. Application of novel electro-optic components and devices is continuing and will be a key for much more general and powerful architectures. Vanishing of communication hardware limitations will result in the elimination of programming bottlenecks in parallel data processing. Standardization of the functional characteristics of a programming model of massively parallel computers will become established. Then efficient programming environments can be developed. The result will be a widespread use of massively parallel processing systems in many areas of application.

Massively Parallel Processing Applications and Development

Massively Parallel Processing Applications and Development PDF Author: L. Dekker
Publisher: Elsevier
ISBN: 1483290433
Category : Computers
Languages : en
Pages : 996

Get Book Here

Book Description
The contributions of a diverse selection of international hardware and software specialists are assimilated in this book's exploration of the development of massively parallel processing (MPP). The emphasis is placed on industrial applications and collaboration with users and suppliers from within the industrial community consolidates the scope of the publication. From a practical point of view, massively parallel data processing is a vital step to further innovation in all areas where large amounts of data must be processed in parallel or in a distributed manner, e.g. fluid dynamics, meteorology, seismics, molecular engineering, image processing, parallel data base processing. MPP technology can make the speed of computation higher and substantially reduce the computational costs. However, to achieve these features, the MPP software has to be developed further to create user-friendly programming systems and to become transparent for present-day computer software. Application of novel electro-optic components and devices is continuing and will be a key for much more general and powerful architectures. Vanishing of communication hardware limitations will result in the elimination of programming bottlenecks in parallel data processing. Standardization of the functional characteristics of a programming model of massively parallel computers will become established. Then efficient programming environments can be developed. The result will be a widespread use of massively parallel processing systems in many areas of application.

Advances in Edge Computing: Massive Parallel Processing and Applications

Advances in Edge Computing: Massive Parallel Processing and Applications PDF Author: F. Xhafa
Publisher: IOS Press
ISBN: 1643680633
Category : Computers
Languages : en
Pages : 326

Get Book Here

Book Description
The rapid advance of Internet of Things (IoT) technologies has resulted in the number of IoT-connected devices growing exponentially, with billions of connected devices worldwide. While this development brings with it great opportunities for many fields of science, engineering, business and everyday life, it also presents challenges such as an architectural bottleneck – with a very large number of IoT devices connected to a rather small number of servers in Cloud data centers – and the problem of data deluge. Edge computing aims to alleviate the computational burden of the IoT for the Cloud by pushing some of the computations and logics of processing from the Cloud to the Edge of the Internet. It is becoming commonplace to allocate tasks and applications such as data filtering, classification, semantic enrichment and data aggregation to this layer, but to prevent this new layer from itself becoming another bottleneck for the whole computing stack from IoT to the Cloud, the Edge computing layer needs to be capable of implementing massively parallel and distributed algorithms efficiently. This book, Advances in Edge Computing: Massive Parallel Processing and Applications, addresses these challenges in 11 chapters. Subjects covered include: Fog storage software architecture; IoT-based crowdsourcing; the industrial Internet of Things; privacy issues; smart home management in the Cloud and the Fog; and a cloud robotic solution to assist medical applications. Providing an overview of developments in the field, the book will be of interest to all those working with the Internet of Things and Edge computing.

Programming Massively Parallel Processors

Programming Massively Parallel Processors PDF Author: David B. Kirk
Publisher: Newnes
ISBN: 0123914183
Category : Computers
Languages : en
Pages : 519

Get Book Here

Book Description
Programming Massively Parallel Processors: A Hands-on Approach, Second Edition, teaches students how to program massively parallel processors. It offers a detailed discussion of various techniques for constructing parallel programs. Case studies are used to demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. This guide shows both student and professional alike the basic concepts of parallel programming and GPU architecture. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in depth. This revised edition contains more parallel programming examples, commonly-used libraries such as Thrust, and explanations of the latest tools. It also provides new coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more; increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism; and two new case studies (on MRI reconstruction and molecular visualization) that explore the latest applications of CUDA and GPUs for scientific research and high-performance computing. This book should be a valuable resource for advanced students, software engineers, programmers, and hardware engineers. - New coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more - Increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism - Two new case studies (on MRI reconstruction and molecular visualization) explore the latest applications of CUDA and GPUs for scientific research and high-performance computing

Parallel Processing for Scientific Computing

Parallel Processing for Scientific Computing PDF Author: Michael A. Heroux
Publisher: SIAM
ISBN: 9780898718133
Category : Computers
Languages : en
Pages : 421

Get Book Here

Book Description
Parallel processing has been an enabling technology in scientific computing for more than 20 years. This book is the first in-depth discussion of parallel computing in 10 years; it reflects the mix of topics that mathematicians, computer scientists, and computational scientists focus on to make parallel processing effective for scientific problems. Presently, the impact of parallel processing on scientific computing varies greatly across disciplines, but it plays a vital role in most problem domains and is absolutely essential in many of them. Parallel Processing for Scientific Computing is divided into four parts: The first concerns performance modeling, analysis, and optimization; the second focuses on parallel algorithms and software for an array of problems common to many modeling and simulation applications; the third emphasizes tools and environments that can ease and enhance the process of application development; and the fourth provides a sampling of applications that require parallel computing for scaling to solve larger and realistic models that can advance science and engineering.

CUDA Application Design and Development

CUDA Application Design and Development PDF Author: Rob Farber
Publisher: Elsevier
ISBN: 0123884268
Category : Computers
Languages : en
Pages : 338

Get Book Here

Book Description
The book then details the thought behind CUDA and teaches how to create, analyze, and debug CUDA applications. Throughout, the focus is on software engineering issues: how to use CUDA in the context of existing application code, with existing compilers, languages, software tools, and industry-standard API libraries."--Pub. desc.

Using OpenCL

Using OpenCL PDF Author: Janusz Kowalik
Publisher: IOS Press
ISBN: 1614990298
Category : Computers
Languages : en
Pages : 312

Get Book Here

Book Description


The Massively Parallel Processor

The Massively Parallel Processor PDF Author: Jerry L. Potter
Publisher: MIT Press (MA)
ISBN: 9780262661799
Category : Computers
Languages : en
Pages : 304

Get Book Here

Book Description
This collection of articles documents the design of one such computer, a single instruction multiple data stream (SIMD) class supercomputer with 16,834 processing units capable of over 6 billion 8 bit operations per second.

Parallel Computing: Technology Trends

Parallel Computing: Technology Trends PDF Author: I. Foster
Publisher: IOS Press
ISBN: 1643680714
Category : Computers
Languages : en
Pages : 806

Get Book Here

Book Description
The year 2019 marked four decades of cluster computing, a history that began in 1979 when the first cluster systems using Components Off The Shelf (COTS) became operational. This achievement resulted in a rapidly growing interest in affordable parallel computing for solving compute intensive and large scale problems. It also directly lead to the founding of the Parco conference series. Starting in 1983, the International Conference on Parallel Computing, ParCo, has long been a leading venue for discussions of important developments, applications, and future trends in cluster computing, parallel computing, and high-performance computing. ParCo2019, held in Prague, Czech Republic, from 10 – 13 September 2019, was no exception. Its papers, invited talks, and specialized mini-symposia addressed cutting-edge topics in computer architectures, programming methods for specialized devices such as field programmable gate arrays (FPGAs) and graphical processing units (GPUs), innovative applications of parallel computers, approaches to reproducibility in parallel computations, and other relevant areas. This book presents the proceedings of ParCo2019, with the goal of making the many fascinating topics discussed at the meeting accessible to a broader audience. The proceedings contains 57 contributions in total, all of which have been peer-reviewed after their presentation. These papers give a wide ranging overview of the current status of research, developments, and applications in parallel computing.

Parallel Computing Architectures and APIs

Parallel Computing Architectures and APIs PDF Author: Vivek Kale
Publisher: CRC Press
ISBN: 1351029207
Category : Computers
Languages : en
Pages : 342

Get Book Here

Book Description
Parallel Computing Architectures and APIs: IoT Big Data Stream Processing commences from the point high-performance uniprocessors were becoming increasingly complex, expensive, and power-hungry. A basic trade-off exists between the use of one or a small number of such complex processors, at one extreme, and a moderate to very large number of simpler processors, at the other. When combined with a high-bandwidth, interprocessor communication facility leads to significant simplification of the design process. However, two major roadblocks prevent the widespread adoption of such moderately to massively parallel architectures: the interprocessor communication bottleneck, and the difficulty and high cost of algorithm/software development. One of the most important reasons for studying parallel computing architectures is to learn how to extract the best performance from parallel systems. Specifically, you must understand its architectures so that you will be able to exploit those architectures during programming via the standardized APIs. This book would be useful for analysts, designers and developers of high-throughput computing systems essential for big data stream processing emanating from IoT-driven cyber-physical systems (CPS). This pragmatic book: Devolves uniprocessors in terms of a ladder of abstractions to ascertain (say) performance characteristics at a particular level of abstraction Explains limitations of uniprocessor high performance because of Moore’s Law Introduces basics of processors, networks and distributed systems Explains characteristics of parallel systems, parallel computing models and parallel algorithms Explains the three primary categorical representatives of parallel computing architectures, namely, shared memory, message passing and stream processing Introduces the three primary categorical representatives of parallel programming APIs, namely, OpenMP, MPI and CUDA Provides an overview of Internet of Things (IoT), wireless sensor networks (WSN), sensor data processing, Big Data and stream processing Provides introduction to 5G communications, Edge and Fog computing Parallel Computing Architectures and APIs: IoT Big Data Stream Processing discusses stream processing that enables the gathering, processing and analysis of high-volume, heterogeneous, continuous Internet of Things (IoT) big data streams, to extract insights and actionable results in real time. Application domains requiring data stream management include military, homeland security, sensor networks, financial applications, network management, web site performance tracking, real-time credit card fraud detection, etc.

Distributed and Cloud Computing

Distributed and Cloud Computing PDF Author: Kai Hwang
Publisher: Morgan Kaufmann
ISBN: 0128002042
Category : Computers
Languages : en
Pages : 671

Get Book Here

Book Description
Distributed and Cloud Computing: From Parallel Processing to the Internet of Things offers complete coverage of modern distributed computing technology including clusters, the grid, service-oriented architecture, massively parallel processors, peer-to-peer networking, and cloud computing. It is the first modern, up-to-date distributed systems textbook; it explains how to create high-performance, scalable, reliable systems, exposing the design principles, architecture, and innovative applications of parallel, distributed, and cloud computing systems. Topics covered by this book include: facilitating management, debugging, migration, and disaster recovery through virtualization; clustered systems for research or ecommerce applications; designing systems as web services; and social networking systems using peer-to-peer computing. The principles of cloud computing are discussed using examples from open-source and commercial applications, along with case studies from the leading distributed computing vendors such as Amazon, Microsoft, and Google. Each chapter includes exercises and further reading, with lecture slides and more available online. This book will be ideal for students taking a distributed systems or distributed computing class, as well as for professional system designers and engineers looking for a reference to the latest distributed technologies including cloud, P2P and grid computing. - Complete coverage of modern distributed computing technology including clusters, the grid, service-oriented architecture, massively parallel processors, peer-to-peer networking, and cloud computing - Includes case studies from the leading distributed computing vendors: Amazon, Microsoft, Google, and more - Explains how to use virtualization to facilitate management, debugging, migration, and disaster recovery - Designed for undergraduate or graduate students taking a distributed systems course—each chapter includes exercises and further reading, with lecture slides and more available online