Author: F. Xhafa
Publisher: IOS Press
ISBN: 1643680633
Category : Computers
Languages : en
Pages : 326
Book Description
The rapid advance of Internet of Things (IoT) technologies has resulted in the number of IoT-connected devices growing exponentially, with billions of connected devices worldwide. While this development brings with it great opportunities for many fields of science, engineering, business and everyday life, it also presents challenges such as an architectural bottleneck – with a very large number of IoT devices connected to a rather small number of servers in Cloud data centers – and the problem of data deluge. Edge computing aims to alleviate the computational burden of the IoT for the Cloud by pushing some of the computations and logics of processing from the Cloud to the Edge of the Internet. It is becoming commonplace to allocate tasks and applications such as data filtering, classification, semantic enrichment and data aggregation to this layer, but to prevent this new layer from itself becoming another bottleneck for the whole computing stack from IoT to the Cloud, the Edge computing layer needs to be capable of implementing massively parallel and distributed algorithms efficiently. This book, Advances in Edge Computing: Massive Parallel Processing and Applications, addresses these challenges in 11 chapters. Subjects covered include: Fog storage software architecture; IoT-based crowdsourcing; the industrial Internet of Things; privacy issues; smart home management in the Cloud and the Fog; and a cloud robotic solution to assist medical applications. Providing an overview of developments in the field, the book will be of interest to all those working with the Internet of Things and Edge computing.
Massively Parallel Artificial Intelligence
Author: Hiroaki Kitano
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 450
Book Description
The increased sophistication and availability of massively parallel supercomputers has had two major impacts on research in artificial intelligence, both of which are addressed in this collection of exciting new AI theories and experiments. Massively parallel computers have been used to push forward research in traditional AI topics such as vision, search, and speech. More important, these machines allow AI to expand in exciting new ways by taking advantage of research in neuroscience and developing new models and paradigms, among them associate memory, neural networks, genetic algorithms, artificial life, society-of-mind models, and subsumption architectures.A number of chapters show that massively parallel computing enables AI researchers to handle significantly larger amounts of data in real time, which changes the way that AI systems can be built, which in turn makes memory-based reasoning and neural-network-based vision systems become practical. Other chapters present the contrasting view that massively parallel computing provides a platform to model and build intelligent systems by simulating the (massively parallel) processes that occur in nature.
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 450
Book Description
The increased sophistication and availability of massively parallel supercomputers has had two major impacts on research in artificial intelligence, both of which are addressed in this collection of exciting new AI theories and experiments. Massively parallel computers have been used to push forward research in traditional AI topics such as vision, search, and speech. More important, these machines allow AI to expand in exciting new ways by taking advantage of research in neuroscience and developing new models and paradigms, among them associate memory, neural networks, genetic algorithms, artificial life, society-of-mind models, and subsumption architectures.A number of chapters show that massively parallel computing enables AI researchers to handle significantly larger amounts of data in real time, which changes the way that AI systems can be built, which in turn makes memory-based reasoning and neural-network-based vision systems become practical. Other chapters present the contrasting view that massively parallel computing provides a platform to model and build intelligent systems by simulating the (massively parallel) processes that occur in nature.
Advances in Edge Computing: Massive Parallel Processing and Applications
Author: F. Xhafa
Publisher: IOS Press
ISBN: 1643680633
Category : Computers
Languages : en
Pages : 326
Book Description
The rapid advance of Internet of Things (IoT) technologies has resulted in the number of IoT-connected devices growing exponentially, with billions of connected devices worldwide. While this development brings with it great opportunities for many fields of science, engineering, business and everyday life, it also presents challenges such as an architectural bottleneck – with a very large number of IoT devices connected to a rather small number of servers in Cloud data centers – and the problem of data deluge. Edge computing aims to alleviate the computational burden of the IoT for the Cloud by pushing some of the computations and logics of processing from the Cloud to the Edge of the Internet. It is becoming commonplace to allocate tasks and applications such as data filtering, classification, semantic enrichment and data aggregation to this layer, but to prevent this new layer from itself becoming another bottleneck for the whole computing stack from IoT to the Cloud, the Edge computing layer needs to be capable of implementing massively parallel and distributed algorithms efficiently. This book, Advances in Edge Computing: Massive Parallel Processing and Applications, addresses these challenges in 11 chapters. Subjects covered include: Fog storage software architecture; IoT-based crowdsourcing; the industrial Internet of Things; privacy issues; smart home management in the Cloud and the Fog; and a cloud robotic solution to assist medical applications. Providing an overview of developments in the field, the book will be of interest to all those working with the Internet of Things and Edge computing.
Publisher: IOS Press
ISBN: 1643680633
Category : Computers
Languages : en
Pages : 326
Book Description
The rapid advance of Internet of Things (IoT) technologies has resulted in the number of IoT-connected devices growing exponentially, with billions of connected devices worldwide. While this development brings with it great opportunities for many fields of science, engineering, business and everyday life, it also presents challenges such as an architectural bottleneck – with a very large number of IoT devices connected to a rather small number of servers in Cloud data centers – and the problem of data deluge. Edge computing aims to alleviate the computational burden of the IoT for the Cloud by pushing some of the computations and logics of processing from the Cloud to the Edge of the Internet. It is becoming commonplace to allocate tasks and applications such as data filtering, classification, semantic enrichment and data aggregation to this layer, but to prevent this new layer from itself becoming another bottleneck for the whole computing stack from IoT to the Cloud, the Edge computing layer needs to be capable of implementing massively parallel and distributed algorithms efficiently. This book, Advances in Edge Computing: Massive Parallel Processing and Applications, addresses these challenges in 11 chapters. Subjects covered include: Fog storage software architecture; IoT-based crowdsourcing; the industrial Internet of Things; privacy issues; smart home management in the Cloud and the Fog; and a cloud robotic solution to assist medical applications. Providing an overview of developments in the field, the book will be of interest to all those working with the Internet of Things and Edge computing.
Parallel Processing for Artificial Intelligence 3
Author: J. Geller
Publisher: Elsevier
ISBN: 0080553826
Category : Computers
Languages : en
Pages : 357
Book Description
The third in an informal series of books about parallel processing for Artificial Intelligence, this volume is based on the assumption that the computational demands of many AI tasks can be better served by parallel architectures than by the currently popular workstations. However, no assumption is made about the kind of parallelism to be used. Transputers, Connection Machines, farms of workstations, Cellular Neural Networks, Crays, and other hardware paradigms of parallelism are used by the authors of this collection.The papers arise from the areas of parallel knowledge representation, neural modeling, parallel non-monotonic reasoning, search and partitioning, constraint satisfaction, theorem proving, parallel decision trees, parallel programming languages and low-level computer vision. The final paper is an experience report about applications of massive parallelism which can be said to capture the spirit of a whole period of computing history.This volume provides the reader with a snapshot of the state of the art in Parallel Processing for Artificial Intelligence.
Publisher: Elsevier
ISBN: 0080553826
Category : Computers
Languages : en
Pages : 357
Book Description
The third in an informal series of books about parallel processing for Artificial Intelligence, this volume is based on the assumption that the computational demands of many AI tasks can be better served by parallel architectures than by the currently popular workstations. However, no assumption is made about the kind of parallelism to be used. Transputers, Connection Machines, farms of workstations, Cellular Neural Networks, Crays, and other hardware paradigms of parallelism are used by the authors of this collection.The papers arise from the areas of parallel knowledge representation, neural modeling, parallel non-monotonic reasoning, search and partitioning, constraint satisfaction, theorem proving, parallel decision trees, parallel programming languages and low-level computer vision. The final paper is an experience report about applications of massive parallelism which can be said to capture the spirit of a whole period of computing history.This volume provides the reader with a snapshot of the state of the art in Parallel Processing for Artificial Intelligence.
AAAI-94
Author:
Publisher:
ISBN: 9780262510783
Category :
Languages : en
Pages : 1544
Book Description
AAAI proceedings describe innovative concepts, techniques, perspectives, and observations that present promising research directions in artificial intelligence.
Publisher:
ISBN: 9780262510783
Category :
Languages : en
Pages : 1544
Book Description
AAAI proceedings describe innovative concepts, techniques, perspectives, and observations that present promising research directions in artificial intelligence.
Parallel Processing for Artificial Intelligence 1
Author: L.N. Kanal
Publisher: Elsevier
ISBN: 1483295745
Category : Computers
Languages : en
Pages : 445
Book Description
Parallel processing for AI problems is of great current interest because of its potential for alleviating the computational demands of AI procedures. The articles in this book consider parallel processing for problems in several areas of artificial intelligence: image processing, knowledge representation in semantic networks, production rules, mechanization of logic, constraint satisfaction, parsing of natural language, data filtering and data mining. The publication is divided into six sections. The first addresses parallel computing for processing and understanding images. The second discusses parallel processing for semantic networks, which are widely used means for representing knowledge - methods which enable efficient and flexible processing of semantic networks are expected to have high utility for building large-scale knowledge-based systems. The third section explores the automatic parallel execution of production systems, which are used extensively in building rule-based expert systems - systems containing large numbers of rules are slow to execute and can significantly benefit from automatic parallel execution. The exploitation of parallelism for the mechanization of logic is dealt with in the fourth section. While sequential control aspects pose problems for the parallelization of production systems, logic has a purely declarative interpretation which does not demand a particular evaluation strategy. In this area, therefore, very large search spaces provide significant potential for parallelism. In particular, this is true for automated theorem proving. The fifth section considers the problem of constraint satisfaction, which is a useful abstraction of a number of important problems in AI and other fields of computer science. It also discusses the technique of consistent labeling as a preprocessing step in the constraint satisfaction problem. Section VI consists of two articles, each on a different, important topic. The first discusses parallel formulation for the Tree Adjoining Grammar (TAG), which is a powerful formalism for describing natural languages. The second examines the suitability of a parallel programming paradigm called Linda, for solving problems in artificial intelligence.Each of the areas discussed in the book holds many open problems, but it is believed that parallel processing will form a key ingredient in achieving at least partial solutions. It is hoped that the contributions, sourced from experts around the world, will inspire readers to take on these challenging areas of inquiry.
Publisher: Elsevier
ISBN: 1483295745
Category : Computers
Languages : en
Pages : 445
Book Description
Parallel processing for AI problems is of great current interest because of its potential for alleviating the computational demands of AI procedures. The articles in this book consider parallel processing for problems in several areas of artificial intelligence: image processing, knowledge representation in semantic networks, production rules, mechanization of logic, constraint satisfaction, parsing of natural language, data filtering and data mining. The publication is divided into six sections. The first addresses parallel computing for processing and understanding images. The second discusses parallel processing for semantic networks, which are widely used means for representing knowledge - methods which enable efficient and flexible processing of semantic networks are expected to have high utility for building large-scale knowledge-based systems. The third section explores the automatic parallel execution of production systems, which are used extensively in building rule-based expert systems - systems containing large numbers of rules are slow to execute and can significantly benefit from automatic parallel execution. The exploitation of parallelism for the mechanization of logic is dealt with in the fourth section. While sequential control aspects pose problems for the parallelization of production systems, logic has a purely declarative interpretation which does not demand a particular evaluation strategy. In this area, therefore, very large search spaces provide significant potential for parallelism. In particular, this is true for automated theorem proving. The fifth section considers the problem of constraint satisfaction, which is a useful abstraction of a number of important problems in AI and other fields of computer science. It also discusses the technique of consistent labeling as a preprocessing step in the constraint satisfaction problem. Section VI consists of two articles, each on a different, important topic. The first discusses parallel formulation for the Tree Adjoining Grammar (TAG), which is a powerful formalism for describing natural languages. The second examines the suitability of a parallel programming paradigm called Linda, for solving problems in artificial intelligence.Each of the areas discussed in the book holds many open problems, but it is believed that parallel processing will form a key ingredient in achieving at least partial solutions. It is hoped that the contributions, sourced from experts around the world, will inspire readers to take on these challenging areas of inquiry.
Artificial Intelligence And Information - Proceedings Of The 6th International Conference
Author: Ivan Plander
Publisher: World Scientific
ISBN: 9814550469
Category :
Languages : en
Pages : 434
Book Description
These proceedings comprise about 50 contributions from experts worldwide. The major themes covered include knowledge-based and expert systems, cognitive modeling, neural networks and AI, image processing and computational geometry, and parallel, distributed and decentralised architecture for AI and robotics.
Publisher: World Scientific
ISBN: 9814550469
Category :
Languages : en
Pages : 434
Book Description
These proceedings comprise about 50 contributions from experts worldwide. The major themes covered include knowledge-based and expert systems, cognitive modeling, neural networks and AI, image processing and computational geometry, and parallel, distributed and decentralised architecture for AI and robotics.
A Massively Parallel Architecture for Associative-based Artificial Intelligence
Author: James D. Roberts
Publisher:
ISBN:
Category : Computer algorithms
Languages : en
Pages : 762
Book Description
Publisher:
ISBN:
Category : Computer algorithms
Languages : en
Pages : 762
Book Description
Scientific Information Bulletin
Author:
Publisher:
ISBN:
Category : Research
Languages : en
Pages : 722
Book Description
Publisher:
ISBN:
Category : Research
Languages : en
Pages : 722
Book Description
Models of Massive Parallelism
Author: Max Garzon
Publisher: Springer Science & Business Media
ISBN: 3642779050
Category : Computers
Languages : en
Pages : 284
Book Description
Locality is a fundamental restriction in nature. On the other hand, adaptive complex systems, life in particular, exhibit a sense of permanence and time lessness amidst relentless constant changes in surrounding environments that make the global properties of the physical world the most important problems in understanding their nature and structure. Thus, much of the differential and integral Calculus deals with the problem of passing from local information (as expressed, for example, by a differential equation, or the contour of a region) to global features of a system's behavior (an equation of growth, or an area). Fundamental laws in the exact sciences seek to express the observable global behavior of physical objects through equations about local interaction of their components, on the assumption that the continuum is the most accurate model of physical reality. Paradoxically, much of modern physics calls for a fundamen tal discrete component in our understanding of the physical world. Useful computational models must be eventually constructed in hardware, and as such can only be based on local interaction of simple processing elements.
Publisher: Springer Science & Business Media
ISBN: 3642779050
Category : Computers
Languages : en
Pages : 284
Book Description
Locality is a fundamental restriction in nature. On the other hand, adaptive complex systems, life in particular, exhibit a sense of permanence and time lessness amidst relentless constant changes in surrounding environments that make the global properties of the physical world the most important problems in understanding their nature and structure. Thus, much of the differential and integral Calculus deals with the problem of passing from local information (as expressed, for example, by a differential equation, or the contour of a region) to global features of a system's behavior (an equation of growth, or an area). Fundamental laws in the exact sciences seek to express the observable global behavior of physical objects through equations about local interaction of their components, on the assumption that the continuum is the most accurate model of physical reality. Paradoxically, much of modern physics calls for a fundamen tal discrete component in our understanding of the physical world. Useful computational models must be eventually constructed in hardware, and as such can only be based on local interaction of simple processing elements.
Deep Learning and Parallel Computing Environment for Bioengineering Systems
Author: Arun Kumar Sangaiah
Publisher: Academic Press
ISBN: 0128172932
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
Deep Learning and Parallel Computing Environment for Bioengineering Systems delivers a significant forum for the technical advancement of deep learning in parallel computing environment across bio-engineering diversified domains and its applications. Pursuing an interdisciplinary approach, it focuses on methods used to identify and acquire valid, potentially useful knowledge sources. Managing the gathered knowledge and applying it to multiple domains including health care, social networks, mining, recommendation systems, image processing, pattern recognition and predictions using deep learning paradigms is the major strength of this book. This book integrates the core ideas of deep learning and its applications in bio engineering application domains, to be accessible to all scholars and academicians. The proposed techniques and concepts in this book can be extended in future to accommodate changing business organizations' needs as well as practitioners' innovative ideas. - Presents novel, in-depth research contributions from a methodological/application perspective in understanding the fusion of deep machine learning paradigms and their capabilities in solving a diverse range of problems - Illustrates the state-of-the-art and recent developments in the new theories and applications of deep learning approaches applied to parallel computing environment in bioengineering systems - Provides concepts and technologies that are successfully used in the implementation of today's intelligent data-centric critical systems and multi-media Cloud-Big data
Publisher: Academic Press
ISBN: 0128172932
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
Deep Learning and Parallel Computing Environment for Bioengineering Systems delivers a significant forum for the technical advancement of deep learning in parallel computing environment across bio-engineering diversified domains and its applications. Pursuing an interdisciplinary approach, it focuses on methods used to identify and acquire valid, potentially useful knowledge sources. Managing the gathered knowledge and applying it to multiple domains including health care, social networks, mining, recommendation systems, image processing, pattern recognition and predictions using deep learning paradigms is the major strength of this book. This book integrates the core ideas of deep learning and its applications in bio engineering application domains, to be accessible to all scholars and academicians. The proposed techniques and concepts in this book can be extended in future to accommodate changing business organizations' needs as well as practitioners' innovative ideas. - Presents novel, in-depth research contributions from a methodological/application perspective in understanding the fusion of deep machine learning paradigms and their capabilities in solving a diverse range of problems - Illustrates the state-of-the-art and recent developments in the new theories and applications of deep learning approaches applied to parallel computing environment in bioengineering systems - Provides concepts and technologies that are successfully used in the implementation of today's intelligent data-centric critical systems and multi-media Cloud-Big data